than those from other populations. Najera & Mensua (1979) analyzed two cellar populations and they found that flies from these populations had a greater number of eye colour mutations than flies from other non cellar populations.

In order to explain this fact we tested the behavior of some wine cellar mutants against their wild allele in artificial populations, comparing two culture mediums, one supplemented with alcohol at 10% and the other without alcohol. We chose four eye colour mutants for their phenotype: two of light colour and two of dark colour, which we named 2/54A (allele of cardinal), 2/74B (strain segregating cardinal and cinnabar mutants), 2/58A (allele of sepia), and 1/51.3 (dark eye not yet identified).

The Buzzati-Traverso (1955) serial exchange technique was used to study the action of natural selection and to follow the population dynamics. The populations were started with 100 heterozygotic individuals, obtained from crossing each mutant with a wild wine cellar stock descending from a female which did not give any variability in F2 of eye colour mutants. The initial frequency of both alleles was, then, p=q=0.5.

Two replicae for each mutant population in each medium (alcohol and non-alcohol) was made (making a total of sixteen populations). The culture temperature was 19±1°C and the exchanges to new bottles were carried out every week. All individuals were counted every three weeks at the beginning, every six weeks afterwards, and every twelve weeks at the end of the experiment. Figure 1 shows, in graphic form, the evolution of all populations.

Each mutant attained different gene frequency at equilibrium. Equilibrium was attained approximately 300 days from starting. There were no differences between the normal and the alcohol experiment except in the 1/51.3 mutant, in which the gene frequency was clearly higher in the alcohol medium.

It seems that the different gene frequencies attained are correlated with the grade of colour from darker to lighter.

Table 1. Acid phosphatase activity in crude extract and supernatant of Acph allozyme strains.

<table>
<thead>
<tr>
<th>Strain</th>
<th>Activity Crude extract (mg PNP/hr/g fly)</th>
<th>Activity Supernatant (mg PNP/hr/g fly)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acph(^1)</td>
<td>60.9±6.3</td>
<td>18.7±1.7</td>
</tr>
<tr>
<td>Acph(^2)</td>
<td>70.1±12.5</td>
<td>31.7±5.6</td>
</tr>
<tr>
<td>Acph(^4)</td>
<td>87.7±13.2</td>
<td>63.3±12.6</td>
</tr>
</tbody>
</table>

PNP: p-nitrophenyl phosphate

Fig. 1. Electrophoreograms of acid phosphatase of crude extracts from adult flies of three homozygous genotypes. 1,2: Acph\(^1\)/Acph\(^1\); 3,4: Acph\(^2\)/Acph\(^2\); 5,6: Acph\(^4\)/Acph\(^4\). 1,3,5: Extracts with 0.02M Tris pH 7.0. 2,4,6: Extracts with 0.5% Triton in 0.02M Tris pH 7.0.

of the nuclear fraction was fractionated by centrifugation through a non-linear gradient of sucrose ranging in concentration from 0.4 to 2.0 M, and distribution of acph was examined. The peak of activity was found in fractions corresponding to lysosomes and at the top of the gradient, probably soluble. Acph\(^2\) activity in soluble fraction was 12% of total activity, whereas Acph\(^4\) was 27%, with an accompanying reduction of the activity in lysosomal fraction.

The results described here demonstrate that activity in acph allozymes on electrophoretic gel greatly depends on the difference in capability of the allozymes being incorporated into particle fractions, mainly lysosomes, although it is not clear whether the difference is ascribed to lysosomes or enzyme itself.


D. jambulina belonging to montium subgroup of melanogaster species group (Sophophora; Drosophila) constitutes the most abundantly available species in North India. The study of neuroblast cells from a male larva of D. jambulina indicates that the mitotic chromosomes comprise three pairs of V-shaped, one rod and one J-shaped elements. The three pairs of V-shaped chromosomes differ in length; one is bigger, the second is smaller and the third one is intermediate. In the female larvae, the J-shaped chromosome is replaced by a rod-shaped chromosome. The rod and J-shaped elements, representing the unidentical members of a pair are, therefore, the X and Y chromosomes, respectively. The cytological map of D. jambulina is shown as Figure 1. The salivary chromosome complement has been divided into 106 equal divisions. The X, 2L & 2R extend over 13, 19, 20 divisions while 3L & 3R contain 26 divisions each. The fourth chromosome comprises only two divisions. The landmarks in different salivary chromosomes of D. jambulina have been outlined as follows:

X chromosome: When the chromocentre gets broken, this arm lies singly within or on the outskirts of salivary gland cell. Its smaller size, as compared to others, facilitates its identification. This arm has a compact distal end consisting of two thick dark bands. In the region 5 C, a sharp constriction is preceded by one prominent band and followed by a lightly stained portion and then two bands. At the proximal end of this arm (region 11c to 12a) there is a bigger swelling accompanied by a comparatively smaller swelling on either side.