larvae, microorganisms and various properties of the resource. The precise mechanism of pH modification remains unclear.

A parthenogenetic strain of D. pallidosa-like in the D. ananassae complex.

Matsuda, M., 1 and Y.N. Tobari. 2 Kyorin University, School of Medicine, Mitaka, Tokyo 181-8611, JAPAN, 2 The Research Institute of Evolutionary Biology, Setagaya-ku, Tokyo 158-0098, JAPAN. e-mail: matsudam@kyorin-u.ac.jp

In the D. ananassae complex, parthenogenetic strains of D. pallidosa and D. ananassae were already reported by Futch (1972). According to Futch (1973, 1979) this trait is genetically controlled and the mechanism of parthenogenesis of pallidosa and ananassae seems to be pronuclear duplication and partly terminal fusion. Now, we found parthenogenetic females from an iso-female strain (LAE 345) of D. pallidosa-like collected at Lae, Papua New Guinea in 1981, and established a new parthenogenetically reproducing strain. D. pallidosa-like distributing in Papua New Guinea was described by Tomimura et al. (1993). In addition to a "impaternate" strain of LAE 345, we established a bisexual "bridge" strain of LAE 345. Because F1 virgin females between LAE 345-Im females and eD/Sb ananassae males have any parthenogenetic ability (Table 1), genes controlling the parthenogenesis might be recessive. Dr. Futch kindly gave us a parthenogenetic strain marked with yellow of ananassae, and we made crosses between ananassae impaternate females and males from the "bridge" strain of LAE 345 of pallidosa-like. Because F1 virgin females have also parthenogenetic ability the same as parental parthenogenetic strains (Table 1), the parthenogenetic ability of the two species might be controlled by the same genetic factors.

Futch (1972) showed that parthenogenetic females of ananassae and pallidosa were found in only South Pacific Island. Now we found the parthenogenetic strain of pallidosa-like in Papua New Guinea. But, the distribution of parthenogenetic strains was still restricted in the South Pacific Islands including Papua New Guinea in ananassae complex (Table 2, and Futch 1972). Some genetic factors controlling parthenogenesis might incorporate into the gene pool of pallidosa-like in Papua New Guinea from pallidosa and/or ananassae from South Pacific Islands by hybridization in nature as already suggested by Tomimura et al. (1993) based upon the components of chromosome rearrangements among ananassae complex.

References: Futch, D., 1972, Dros. Inf. Serv. 48: 78; Futch, D., 1973, Genetics 74: s86-s87; Futch, F., 1979, Genetics 91:

<p>| Table 1. Parthenogenesis ability and productivity of impaternate adults. |
|---------------------------------|--------|--------|----------------|----------------|</p>
<table>
<thead>
<tr>
<th>Strains (range)</th>
<th>No. of mothers tested</th>
<th>No. of mothers produced adults</th>
<th>% of mothers produced adults</th>
<th>Impaternates / mother</th>
</tr>
</thead>
<tbody>
<tr>
<td>pallidosa-like (LAE 345-Im)</td>
<td>61</td>
<td>59</td>
<td>96.7</td>
<td>12.6 (1-28)</td>
</tr>
<tr>
<td>ananassae - Im[1]</td>
<td>43</td>
<td>35</td>
<td>81.4</td>
<td>8.1 (1-28)</td>
</tr>
<tr>
<td>F1 (LAE345-Im/anala(eD))</td>
<td>75</td>
<td>0</td>
<td>0.0</td>
<td>0</td>
</tr>
<tr>
<td>F1 (ana-Im/LAE345-Br)</td>
<td>13</td>
<td>13</td>
<td>100.0</td>
<td>13.7 (2-19)</td>
</tr>
</tbody>
</table>

Im: "impaternate" strain. Br. "bridge" strain. F1: (female parents / male parents)
Table 2. Number of strains with impatentae females in various species of the *ananassae* complex.

<table>
<thead>
<tr>
<th>Species</th>
<th>Locality</th>
<th>No. of tested strains (No. of females tested)</th>
<th>No. of strains with impatentae females</th>
</tr>
</thead>
<tbody>
<tr>
<td>ananassae</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Nairobi, Kenya (L)</td>
<td>1 (17)</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Kandy, Sri Lanka (C)</td>
<td>2 (61)</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Coimbatore, India (D)</td>
<td>2 (59)</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Hyderabad, India (HYD)</td>
<td>1 (21)</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Bukit Timer, Singapore (W)</td>
<td>2 (73)</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Chiang Mai, Thailand (B)</td>
<td>1 (27)</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Kuala Lumpur, Malaysia (X)</td>
<td>2 (23)</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Sandakan, Malaysia (S)</td>
<td>1 (10)</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Palawa, Philippines (R)</td>
<td>1 (16)</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Los Banos, Philippines (Q)</td>
<td>3 (77)</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Australia (AUS)</td>
<td>1 (25)</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Guam (GUM)</td>
<td>2 (45)</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Lae, Papua New Guinea (LAE)</td>
<td>1 (20)</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Port Moresby, Papua New Guinea (POM)</td>
<td>2 (101)</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Ponape, Caroline Islands (PNI)</td>
<td>2 (111)</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Tongatapu, Tonga</td>
<td>1 (10)</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Vava'u, Tonga (VAV)</td>
<td>1 (15)</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Pago Pago, Samoa (PPG)</td>
<td>1 (41)</td>
<td>0</td>
</tr>
<tr>
<td>pallidosa-like</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Wau, Papua New Guinea</td>
<td>2 (78)</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Lae, Papua New Guinea</td>
<td>3 (84)</td>
<td>1</td>
</tr>
<tr>
<td>pallidosa</td>
<td>Lautoka, Fiji (NAN)</td>
<td>4 (182)</td>
<td>0</td>
</tr>
<tr>
<td>Taxon K</td>
<td>Kotakinabalu, Malaysia</td>
<td>2 (69)</td>
<td>0</td>
</tr>
<tr>
<td>papuensis-like</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Wau, Papua New Guinea</td>
<td>2 (78)</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Lae, Papua New Guinea</td>
<td>2 (43)</td>
<td>0</td>
</tr>
</tbody>
</table>

Strains, species, and symbol of locality were described in detail by Tomimura et al. (1993)

Distribution of *Drosophila* in Okinawa and Sakishima Islands, Japan.

Watada, Masayoshi,1 and Masanobu Itoh.2 1 Department of Biology and Earth Sciences, Faculty of Science, Ehime University, Matsuyama, Ehime 790-8577, Japan, and 2 Department of Applied Biology, Kyoto Institute of Technology, Matsugasaki, Sakyō-ku, Kyoto 606-8585, Japan; Corresponding author: Masayoshi Watada, e-mail: watada@gserv.g.ehime-u.ac.jp

Distribution of *Drosophila* flies in six islands of Okinawa prefecture of Japan had been surveyed in 1980's and 1990's from ecological and biogeographical viewpoints. Flies were collected using banana bait traps, within seven days after trap setting. At an exceptional site in Nago, Okinawa, flies were collected by sweeping over the garbages around pineapple yard. Figure 1 shows the collection sites of Okinawa and Sakishima islands (Miyakojima, Ishigakijima, Iriomotejima, Haterumajima and Yonagunijima). Flies were classified into one *Phorticella* and 21 *Drosophila* species according to Okada (1987). In his paper,