a field-captured inseminated female of *D. grimshawi* continued to produce fertile eggs for almost a year without additional insemination. This example emphasizes the abundance of sperm that can be stored and remain fertile for many months in the spermathecae and ventral receptacle of this species, as well as the enormous numbers of eggs produced per female over her long reproductive life. At any point in time, a mature female of *D. grimshawi* can potentially carry an egg load of 100 or so mature eggs in her ovaries (Craddock and Kambysellis, 1997). For comparative purposes, the egg load parameter (the number of ovarioles per fly times the number of mature eggs per ovariole) provides only a rough measure of potential female fecundity, given the asynchronous nature of ovariole function in these Hawaiian picture wing species and the lack of solid data on reproductive longevities. Of course, realized fecundity is typically less than potential fecundity. By all measures, however, the potential lifetime fecundity of *D. grimshawi* far exceeds that of non-Hawaiian species and in particular, that of *D. melanogaster* and the other ten *Drosophila* species with complete genome sequences. The availability of these sequence data now provides the chance to address many important questions about the molecular basis of evolutionary differences in longevity, reproductive, developmental, and other traits within the genus *Drosophila*.

Acknowledgments: My thanks to Anneli Hoikkala, Durrell Kapan, and Steve Montgomery who were responsible for the 2010-2011 field collections of *D. grimshawi* from Molokai and East and West Maui, and to Ken Kaneshiro for kind provision of lab facilities at the University of Hawaii during my sabbatical visit. This submission is dedicated to the memory of my late husband and longtime collaborator Michael Kambysellis, who made seminal contributions to knowledge of the structure and function of the female reproductive system of *Drosophila*, and whose enthusiasm for Hawaiian flies knew no bounds.

Drosophila suzukii has been found in tropical Atlantic Rainforest in southeastern Brazil.

Bitner-Mathé, B.C.*, J. Victorino, and F.S. Faria. Departamento de Genética, Instituto de Biologia, Universidade Federal do Rio de Janeiro, 21941 902, Cidade Universitária, Rio de Janeiro, Brazil; *E-mail: bcbitter@biologia.ufrj.br.

Drosophila suzukii (Matsumura, 1931) belongs to the *Drosophila melanogaster* species group, probably native to the southeastern Palaearctic region (Bächli, 2013). Its ability to feed and breed in healthy fruits led it to become an agricultural pest. *D. suzukii* is an invasive species, being recorded in North America...
Dros. Inf. Serv. 97 (2014) Research Notes

(Oxidative stress and longevity: Evidence from a long-lived strain of Drosophila melanogaster.

Deepashree, S., S. Niveditha, T. Shivanandappa, and S.R. Ramesh*. Department of Studies in Zoology, University of Mysore, Manasagangotri, Mysuru – 570006, India; e-mail: rameshuom@gmail.com; *Corresponding author. Tel.: +91 821 2419779.

Oxidative stress is one of the inescapable outcomes of the cellular processes. Reactive oxygen species (ROS) is one such contributor to the oxidative stress. Oxidative stress is implicated in aging and