Parasitoids of Drosophilidae with potential for parasitism on Drosophila suzukii in Brazil.

Wollmann1*, Jutiane, Daniele Cristine Hoffmann Schlesener1, Márcio Soares Ferreira1, Mauro Silveira Garcia1, Valmir Antônio Costa2, and Flávio Roberto Mello Garcia3

1Phytosanitary Department, Eliseu Maciel Agronomy Faculty, Federal University of Pelotas (UFPel), Pelotas, RS, Brazil; 2Biological Institute/ Central Experimental Center of the Biological Institute, Heitor Penteado Highway, km 3 – Zip Code 13092-543 – Campinas – SP – Brazil – PO Box 70 – Zip Code 13012-970; 3Ecology, Zoology and Genetics Department, Biology Institute, Federal University of Pelotas (UFPel), Pelotas, RS, Brazil. University Campus–Zip Code 96160-000. Capão do Leão, RS. *Corresponding Author: jutianewollmann@hotmail.com

Abstract

The spotted wing drosophila is an invading polyphagous species, which causes damage on small stone fruits. In Brazil, the species was detected in 2013. This study registers the occurrence of parasitoids Leptopilina boulardi (Barbotin, Carton & Kelner-Pillault) (Hymenoptera: Figitidae) and Trichopria anastrephae Lima (Hymenoptera: Diapriidae) on blackberry and strawberry fruits attacked by Drosophila suzukii.

Introduction

The spotted wing drosophila, suzukii (Matsumura, 1931) (Diptera, Drosophilidae), is a species endemic to Asia, first registered as an invading species in Hawaii in 1980 (Kaneshiro, 1983). It has rapidly spread worldwide in the last few years, arising as one of the main pests of small stone fruits (Asplen et al., 2015). In 2008, it was recorded simultaneously in California, in the United States (Bolda et al., 2010), and several other localities in Europe (Calabria et al., 2012). For South America, records include Brazil (Deprá et al., 2014; Schlesener et al., 2014; Geisler et al., 2015), Uruguay (González et al., 2015), and Chile (Medina-Muñoz et al., 2015).

This species presents a short life cycle and high biotic potential (Emiljanowicz et al., 2014; Tochen et al., 2014), which may lead to a rapid increase in population when environmental conditions are favorable (Wiman et al., 2014) possibly resulting in considerable economic losses to commercial crops (Beers et al., 2011; Walsh et al., 2011). Currently, the main control method applied is chemical (Cancino et al., 2015), wherein several insecticide classes – such as pyrethroids, spinosyns and organophosphates – have been proven effective over D. suzukii (Bruck et al., 2011). Nevertheless, the fly’s rapid life cycle, which allows for the occurrence of many generations during a single production cycle, and its occurrence in the fruit’s ripening phase, require frequent applications endangering human health and the environment via residue in the fruits, insecticide resistance in insects, as well as the negative effects to pollinators and biological control agents (Cini et al., 2012).

Therefore, alternative strategies for the control of D. suzukii are demanded. Biological control, particularly by use of parasitoids, may help suppress regional D. suzukii population even in crop adjacent habitats (Wang et al., 2016). A great diversity of parasitoids associated with the drosophila genus has been recorded (Fleury et al., 2009). Larvae parasitoids are the most recurring ones, especially those from the
Asobara (Braconidae), Leptopilina, and Ganaspis (Figitidae) genera and pupal parasitoids from the Trichopria (Diapriidae) and Pachycerepoideus (Pteromalidae) genera (Rohlfs and Hoffmeister, 2004; Wertheim et al., 2006; Mitsui and Kimura, 2010). Regarding D. suzukii, numerous field and lab studies performed in Europe and North America have reported that there is an association between the insect and several species belonging to the aforementioned genera, although few have been proven effective in regulating population growth (Mitsui et al., 2007; Mitsui and Kimura, 2010; Miller et al., 2015; Nomano et al., 2015). In its native area, the efficiency of indigenous parasitoids has been evaluated, aiming at exploring a classical biological control strategy, by introducing and establishing natural enemies from the fly’s original area in the invaded areas (Guerrieri et al., 2016). Another approach to the biological control of D. suzukii would be an increase on control agents already present in the recently invaded areas (Cini et al., 2012).

This study aimed to detect the presence of potential biological control agents in four small-fruit producing areas, in the southern region of Rio Grande do Sul, Brazil. By means of Köppen climate classification, the region has a Cfa climate type, characterized by its humid temperate climate (Kottek, 2006), wherein the temperate climate small-fruit crops stand out, such as strawberry, blueberry, blackberry, and raspberry. Of those, strawberry crops are the most representative fruits (Fachinello et al., 2011).

Materials and Methods

The occurrence of potential D. suzukii parasitoids has been verified in four small-fruit producing areas during the 2015/2016 crop, places where the presence of the invading species had already been detected via capture traps for adults and insects emerged from previously sampled fruits. The subject areas are located in Pelotas City, Rio Grande do Sul, Brazil, specifically Rincão da Caneleira (31°32’36”S), Cristal (31°35’19”S), Cascatinha (31°38’23”S), and Cerrito Alegre (31°35’12”S). On a weekly basis, blackberry (Rubus spp.) fruits were collected from the first three locations and strawberry (Fragaria x ananassa) fruits from the last location, respectively.

Fruits were weighed and accommodated individually in plastic containers with a fine layer of vermiculite and a screened orifice at the lid. Fruits were kept in an acclimatized room (24 ± 2°C, 70 ± 10% relative humidity and 12h photo phase) until the emergence of flies and/or parasitoids. Emerging insects were aspirated from the containers and placed in Eppendorf tubes containing 70% alcohol for later identification. D. suzukii specimens were identified by taxonomical characteristics according to Vlach (2013). Parasitoid identification was performed as established by Costa Lima (1940), Norlander (1980), and Guimarães et al. (2003), and voucher species were deposited at the “Oscar Monte” Entomophagous Insect Collection (Biological Institute, Campinas, SP, Brazil; curator: Valmir A. Costa). Parasitoids were transferred to glass tubes (20 mm × 80 mm) containing D. suzukii larvae and pupae originated from laboratory breeding, as to confirm parasitoidism and initiate the breeding of such specimens on said host for later studies (Figure 1). Parasitoidism was allowed for 72 hours and, afterwards, specimens were transferred to Eppendorf tubes containing 70% alcohol following identification based on previous species identification.

Figure 1. Trichopria anastrephae females over D. suzukii pupae.
Figure 2. *Trichopria anastrephae* (a) and *Leptopilina boulardi* (b) females.

Results and Discussion

During the study period, 1,582 fruits were collected, out of which 638 were strawberries and 944 blackberries. The recovered parasitoids were *Leptopilina boulardi* and *Trichopria anastrephae* (Figure 2). In addition to *D. suzukii*, other drosophilid species emerged from the infested fruits, suggesting a secondary attack after the initial damage caused by the species. *L. boulardi* occurred in a small proportion in relation to the *T. anastrephae* (Table 1).

Table 1. *D. suzukii, L. boulardi* and *T. anastrephae* specimens emerged from blackberry and strawberry fruits collected in four locations in countryside Pelotas, RS, Brazil, during the 2015/2016 crop.

<table>
<thead>
<tr>
<th>Location</th>
<th>Infested fruits</th>
<th>D. suzukii</th>
<th>L. boulardi</th>
<th>T. anastrephae</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>♂</td>
<td>♀</td>
<td>♂</td>
</tr>
<tr>
<td>Rubus sp.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rincão da Caneleira</td>
<td>132</td>
<td>685</td>
<td>730</td>
<td>18</td>
</tr>
<tr>
<td>Cascatinha</td>
<td>92</td>
<td>332</td>
<td>378</td>
<td>3</td>
</tr>
<tr>
<td>Cristal</td>
<td>479</td>
<td>3,142</td>
<td>3,363</td>
<td>9</td>
</tr>
<tr>
<td>Fragaria x ananassa</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cerrito Alegre</td>
<td>169</td>
<td>735</td>
<td>754</td>
<td>7</td>
</tr>
<tr>
<td>Total</td>
<td>872</td>
<td>4,894</td>
<td>5,225</td>
<td>37</td>
</tr>
</tbody>
</table>

This fact can be related to the cellular answer presented by *Drosophila* larvae against hymenopterous parasitoids, unchaining an encapsulation process on their eggs, unlike pupae parasitoids, which are less affected (Kacsoh and Schlenke, 2012). In *D. suzukii* this immune response is more potent than in other drosophilids, as can be verified by the higher rate of parasitoid egg encapsulation (Poyet *et al.*, 2013).

Leptopilina boulardi is a Drosophilidae larval parasitoid, particularly to species from the *Drosophila* genus (Allemand *et al.*, 2002), which lay their eggs individually in second instar larvae (Krzemien, 2008). In the event of eclosion by the hymenopterous larvae, they consume the fly’s internal tissue, and adult parasitoids...
emerge from the dipterous pupae (Kacsoh and Schlenke, 2012). Such parasitoids are originally from Africa, but they are currently distributed in tropical and warm temperate climate regions (Seyahooei et al., 2011), like Europe, Asia, Africa, the American continent, and Caribbean islands (Allemand et al., 2002). Brazil has recorded them in several states, such as São Paulo (Nordlander, 1980), Minas Gerais and Rio de Janeiro (Guimarães et al., 2003).

The *T. anastrephae* species was described by Lima (1940), who obtained the specimens from *Anastrepha serpentina* (Wiedemann) and *Anastrepha* spp. (Diptera: Tephritidae) puparia. Species from the *Trichopria* genus are pupae parasitoids, whose females lay their eggs in the *Drosophila*’s hemocele and their larvae consume the pupae’s internal tissues, from where the adult emerges (Kacsoh and Schlenke, 2012). *Trichopria anastrephae* is distributed throughout Minas Gerais (Silva, 2003), Goiás (Marchiori and Penteado-Dias, 2001), Santa Catarina (Garcia and Corseuil, 2004), and Rio Grande do Sul (Cruz et al., 2011) states. It has also been recorded in Argentina (Turica and Mallo, 1961) and in Venezuela (Boscán and Godoy, 1996).

The spotted wing drosophila is already present in the agroecosystems of the southern Rio Grande do Sul region, and there have been reports of losses to several crops. Therefore, this drosophilid presents a risk to local fruit production, since the region presents climate characteristics and host plants to allow for its establishment. The results found demonstrate the importance of *L. boulardi* and *T. anastrephae*, species, parasitoids that occur naturally in those areas, and which can help reduce *D. suzukii* population.

Acknowledgment: Our acknowledgments to Me. Cristiano M. Teixeira for the pictures, to the lab team, Júlia G. Aleixo and Sávio R. Mendes, and to CAPES for the financial support.

New chromosomic paracentric inversions in *Drosophila cardinoides* (Diptera, Drosophilidae) at Santa Catarina Island, South of Brazil.

Dencker, M.J., L.W. Fischer¹, and D.C. De Toni². ¹Laboratório de Drosofilídeos, Departamento de Biologia Celular, Embriologia e Genética – Universidade Federal de Santa Catarina; ²Pós-Graduação em Biologia Celular e do Desenvolvimento, UFSC, Florianópolis, Brasil; e-mail: michele.dencker@gmail.com; Keywords: *Cardini* group, Forest Atlantic, Inversion polymorphisms, South America, Cytogenetic, Neotropical species.

Introduction

Included in the *Cardini* group, which is characterized by drosophila with polymorphisms of abdominal pigmentation and inhabits neotropical region, *Drosophila cardinoides* is a representative species in southern Brazil that can be collected many times in the island of Santa Catarina, mainly on the border of the forest. This species is characterized by a dark abdominal pigmentation, wings and abdomen with bright appearance, but has the body morphology very similar to *D. procardinoides*, forming a monophyletic group. Thus, they are not taxonomically decisive features. Cytogenetically, the chromosomal inversions of *D. cardinoides* are more fixed, following the pattern of the *Cardini* group. According to previous studies, it was expected that the number of inversions of *D. cardinoides* was not so wide, since it is less polymorphic compared to other species, such as *Drosophila polymorpha*, for example. Even with significant advances on the chromosomal map of *D. cardinoides*, there are many gaps and investigations to be made in order to contribute to evolutionary and phylogenetic studies of this species group.

Material and Methods

In the southern part of the island of Florianopolis, in Caieira da Barra do Sul (Figure 1) there is a conserved Atlantic Forest area remaining at the Serra do Tabuleiro State Park, where *Drosophila* were collected in the years of 2015 and 2016 during summer and spring. For this, an entomological network was used over baits with bananas and yeast. From these collections, eleven isolinages of *Drosophila cardinoides* were established, maintained in culture media at a constant temperature of 17°C. To obtain the polytenic chromosomes, cytological slides were prepared with third stage larvae using the Ashburner technique (1967) with small modifications and for the chromosomal analysis, the Rohde and Valente (1996) and Cordeiro et al. (2014) methods.

![Figure 1. Point shows the collecting point at Florianópolis Island (S 27°48'; O 48°56').](image-url)