A University/Industry Consortium for Natural Gas Production, Transmission, and Storage Systems Optimization

The University of Oklahoma
Professor F. Hank Grant (Industrial Eng.)
Professor Faruk Civan (Petroleum Eng.)
Professor Miguel Bagajewicz (Chemical Eng.)

Objectives

- Establish an Industry/University Consortium
- Receive intellectual and financial support from industry
- Align academic research with industry needs
- Create and transfer technology that the industry needs now

Today’s Objectives

- Provide basic information about the Consortium structure and general plans.
- Propose some research areas and topics for your feedback.
- Get direction from you on other research topics that are important.
- Get direction from you on the overall concepts of the Consortium.

Main Themes

- Overlay financial considerations onto the physical system
 - Reservoirs, plants, pipeline, storage
 - Contracts, operational costs, investment costs
- Adapt a broader system’s view rather than focus on subsystems
 - Coordination across the supply chain
 - Coordination across physical subsystems
Major Research Areas

- Monitoring and Surveillance
- Supply and Demand Management
- Repair and Maintenance
- Storage and transportation
- Design of surface and gas processing facilities (Sweetening, Gas plants, LNG plants, etc)
- Science-Based Models in Support of Intelligent Gas Facility Emissions Regulation
- Gas Solubility
- Leak Detection
- System Maintenance Modeling and Planning

Similar Consortia and Professional Organizations

<table>
<thead>
<tr>
<th>Name</th>
<th>Administration Structure</th>
<th>Physical Systems</th>
<th>Financial Planning</th>
<th>Focus</th>
</tr>
</thead>
<tbody>
<tr>
<td>Natural Gas Consortium (NGC)</td>
<td>University/Industry</td>
<td>Yes</td>
<td>Yes</td>
<td>Transmission, Storage and Distribution</td>
</tr>
<tr>
<td>Gas Technology Institute (GTI)</td>
<td>Private non-profit</td>
<td>Yes</td>
<td>No</td>
<td>Supply, Delivery, End use distributions</td>
</tr>
<tr>
<td>Pipeline Research Council International, Inc. (PRCI)</td>
<td>Private non-profit</td>
<td>Yes</td>
<td>No</td>
<td>Design, Construction & Operations, Materials, Corrosion & Inspection, Compressor & Pump Station, Underground Storage</td>
</tr>
<tr>
<td>Natural Gas Storage Technology Consortium (GSTC)</td>
<td>University/Industry</td>
<td>Yes</td>
<td>No</td>
<td>Storage systems</td>
</tr>
<tr>
<td>Gas Machinery Research Council (GMRG)</td>
<td>Private non-profit (under SGA)</td>
<td>Yes</td>
<td>No</td>
<td>Compression facilities</td>
</tr>
</tbody>
</table>

Natural Gas Facility Emission Regulations

- Problem: the disconnect between EPA regulators and industry realities, discovered by
 - Direct feedback from industry
 - EPA feedback solicitation document available at EPA’s web site

- Proposed solution
 - OU becomes a neutral, independent third party to work with both sides
 - Develop science-based models of NG facilities with respect to their emissions properties
 - Create a decision support tool for scientifically accurate evaluation of regulation policies

Sample Research Topics

Part I - Research Being-Formulated or In-Progress
Comments and Input Welcome
Salt-Cavern Storage Diagnostics and Management

- Install and test the improved storage instrumentation and management technologies
- Provide improved insights and understanding of the inventory analysis and integrity assessment approaches.

Gas solubility in liquids

- Carry out gas dissolution tests at required conditions using a PVT cell.
- Measure the gas solubility and its parameters.
- Develop empirical correlations.

Optimization Tools for Preventive Maintenance

- Determine optimum of:
 - Preventive Maintenance for each equipment
 - Inventory levels
 - Personnel
 - Corrective Maintenance Priorities
- Can be used in conjunction with existing software (SAP, ORACLE, etc)
- We use Montecarlo Simulations and Genetic Algorithms

Leak and Abnormal Situation Detection and Identification

- Determination of leak location and size using:
 a) Redundant measurements
 b) Modeling
 c) Appropriate Hardware
- Diagnosis of Abnormal situations involving many phases, unknown conditions, etc.
- Key Technologies:
 - Mathematical Models
 - Data Reconciliation Techniques
Pipeline Network Design

- We propose to use Mathematical Optimization addressing:
 1. Changing demand
 2. Uncertainty and Financial Risk
 3. Future Looping
 4. Future increased Capacity
 5. Pressure changes through time

- Key ingredients:
 1. Mathematical Models of flow
 2. Modern optimization techniques

- Much more powerful than J-Curve Analysis

Management and Coordination of Contracts

Sample Research Topics

Part II – Collected from the Literature
Comments and Input Welcome

Production and Facility Planning

- Given
 1. estimated reservoir capacities
 2. availability of storage facilities
 3. configuration of existing facilities (gathering network, compressors, valves, processing plants)

- Find
 1. the production plan for the reservoirs and the facilities building schedule

- Such that
 1. demand is satisfied
 2. operational and investment costs are minimized
Some Other Topics

- Optimal design of LNG gas plants
- Minimizing fuel burning costs in pipeline operations

Potential Participants in the Proposed Consortium

- Gas Producers
- Pipeline Operators
- Local Distribution Companies (LDC)
- Natural Gas Marketing Companies
- Storage operators
 - Salt Cavern
 - Aquifers

Benefits to Industry

- Solutions to Problems of Practical Interest in Industry
 - Reports, Website, Clearinghouse
 - Specific Consulting Projects
- Cost Sharing of Research across Members
- Education Services to Industry
 - Short Courses
- Direct Access to Students with Expertise in Modern Tools and Technology

Benefits to the University

- Experience and Education for Students
 - Prepared for working in industry
- Real World Research Projects
- Interaction and guidance from Industry
- Funding support
Industry Comments and Feedback

- Do you like the proposed research topics?
- What do you think about the organization?
- What other topics would you like to see?
 - We have a PhD Student available now to work on a topic of interest.
 - Would you provide data, case study info, priorities, mentoring to this student to include real-world perspective in the research?

OU Participant, Faruk Civan

- Professor of Petroleum Engineering
- Research Areas
 - Natural gas engineering, measurement, processing, hydrates, transportation, and storage.
 - Corrosion protection in oil and gas wells.
 - Reservoir and well analyses, modeling, and simulation, and flow assurance
- Industry Experience
 - Consultant, Petrolite Corporation
 - Reservoir Engineering Consultant, Ensher Exploration, Inc.
 - Reservoir Engineering Consultant, Mobil Research and Development Corporation, Dallas Research Division

OU Participant, Miguel Bagajewicz

- Professor of Chemical Engineering
- Research Areas
 - Data reconciliation and leak detection in pipeline networks
 - Instrumentation upgrade to improve leak detection in process plants and pipelines
 - Refinery operations with pricing and financial risk management
 - Energy efficiency and carbon emission reductions
- Industry Experience
 - Process Design- Heavy Water Plant (Argentina).
 - Simulation Sciences (Simsci), USA.
 - OK-Solutions (own company). Several projects with Shell, ConocoPhillips, Ecopetrol, Pemex and others

OU Participant, F. Hank Grant

- Professor of Industrial Engineering
- Research Areas
 - Simulation and Simulation Languages
 - Electromagnetic Compatibility
 - “What Cell Phones Do to Things”
 - Inventory and Logistics Systems
- Industrial Experience
 - Founder, Pritsker Corp.
 - Founder, FACTROL
 - Consultant, numerous Fortune 500 Companies
 - Lab Director, Hewlett Packard Laboratories
 - Program Director, National Science Foundation