Skip Navigation

National Weather Center

The National Weather Center Logo

Alert Message


Meteorologist Gary England welcomes you to the National Weather Center! Click on the link below to take a quick tour of our building and learn a bit more about the enterprise housed within our walls.NWC Welcome Video

Research is a hallmark of the National Weather Center. From national research organizations such as the NOAA National Severe Storms Laboratory to academic researchers from multiple disciplines, the National Weather Center remains at the forefront of innovation and critical discovery in the field of meteorology.


Tours of the National Weather Center are offered to schools, groups and individuals at no cost. Reservations are required and tours fill up quickly so check the tour schedule for availability and more details.

Schedule a Tour

The National Weather Center Library supports the research and education of all entities in the National Weather Center and the students of the University of Oklahoma. Students, faculty, staff and other members of the National Weather Center have access to numerous databases of information including both OU and NOAA Libraries.

Visit the Library

Multiple organizations within the National Weather Center forecast weather for areas throughout the country, including our location in Norman, Oklahoma. You can get your latest forecast through our current weather page or by clicking below.

Current Weather

The annual National Weather Festival, held each fall at the National Weather Center, highlights the many weather related organizations and activities in central Oklahoma.  This free, open-house event is filled with fun activities for all ages!

National Weather Festival

Skip Side Navigation


Dr. Petra Klein has been awarded an AMS Fellow Award!


Earth Cycle

A NASA scientist's final scientific paper, published posthumously this month, reveals new insights into one of the most complex challenges of Earth's climate: understanding and predicting future atmospheric levels of greenhouse gases and the role of the ocean and land in determining those levels. Read more here.


Rick Smith NOAA

From blizzards to tornadoes, Rick Smith has seen and forecast it all. He’s the warning coordination meteorologist at the National Weather Service in Norman, Okla. — one of the busiest weather forecast offices in the nation.

Every year, the Norman office issues hundreds of severe-weather alerts, including dozens of tornado warnings, meticulously predicting and tracking Mother Nature’s every move. It’s no easy job, but Smith and his colleagues have taken innovative and unique steps to streamline the process. It’s like “doing weather in the future,” he says. Read more....


SR3 and rainbow

The University of Oklahoma’s newest Shared Mobile Atmospheric Research and Teaching Radar, SR3, today deployed to Monroe, Louisiana, where a slight risk of tornadic storms exists. An upgrade of the original dual-polarimetric SMART radar, the SR3 just completed its first mission on March 19 to New Market, Alabama, in coordination with the National Oceanic and Atmospheric Administration’s National Severe Storms Laboratory and the OU Cooperative Institute for Mesoscale Meteorological Studies.

“The SR3 and NOAA’s P-3 aircraft collected data on a rapidly evolving severe hailstorm that preceded a series of tornadic supercells. The SR3 collaborated with the University of Alabama Huntsville and National Weather Service Hytop radars in southern Tennessee on sampling a tornadic storm that produced significant damage as it crossed the border into northern Alabama. Multi-radar observations were captured over a three-hour period from the initial organization to tornadic dissipation,” said Michael Biggerstaff, professor of meteorology and director of the OU SMART radar program.

The SR3 observed a second tornadic storm to the south that produced five tornadoes and hailstones as large as 5.25 inches. The P-3 aircraft flew ahead of the southern tornadic storm and measured winds within the storm during all five tornadoes. The SR3 and P-3 aircraft will continue to work together near Monroe tonight. The project is part of the Southeastern Tornadogenesis and Risk Reduction Exercise, which runs until April 13. The STARR project is part of the larger VORTEX-Southeast research project funded by NOAA.

When the project ends, the SR3 will return to Oklahoma to be used to train the next generation of scientists in an undergraduate radar meteorology course.


Dr. Homeyer

NORMAN, Okla.—A University of Oklahoma professor, Cameron Homeyer, is a recipient of a NASA Research Opportunities in Space and Earth Science grant for new, early career investigators. Homeyer’s research is the first concept of its kind to take ground-based radar observations of storms and link them to satellite observations of trace gases to better understand the characteristics of storms and how they modify the atmospheric composition.

“NASA’s Early Career Investigator Award goes only to the best of the best. We are thrilled and honored that NASA has selected Professor Homeyer to receive this award,” said Berrien Moore, vice president of Weather and Climate Programs, dean of the OU College of Atmospheric and Geographic Sciences and director of the National Weather Center.

“We are applying methods to discriminate between air masses that recently have been modified by storms and those air masses that have not been impacted by storms,” said Homeyer, assistant professor and associate director for undergraduate studies, School of Meteorology, OU College of Atmospheric Sciences. “This is the first time anyone has applied these methods in this way to understand this problem.”

The impact of storms on atmospheric composition is not well understood and changes in water vapor and ozone from these storms can have important impacts on Earth’s climate and human health. Storms move air masses with certain chemical characteristics around, and these air masses can impact the atmosphere’s radiation budget, pollution and air quality.

“We don’t understand how these storms modify Earth’s upper atmosphere, particularly in the stratosphere, the layer of the Earth’s atmosphere where the ozone lies and absorbs the ultraviolet radiation; and the troposphere, the layer of the Earth’s atmosphere where human activity takes place,” said Homeyer.

Homeyer will use a trajectory model and information on winds in the atmosphere, then put particles or little air bubbles in places where the storms occur, move them around with the winds and watch as they move downstream to find locations where air masses from storms coincide with satellite observations. Satellite observations from around the world then can be linked to recent storms and compared to air masses that have not been influenced by storms.

Funding for the three-year, $284,000 grant supports the NASA Earth Science mission by advancing the use of satellites and providing data that contributes to understanding the climate system.   



WASHINGTON — A report setting priorities for the next decade of Earth science missions recommends that NASA pursue a mix of large and small missions to help better understand the changing nature of the planet.

The report, released by the National Academies of Science, Engineering and Medicine in an event here Jan. 5, includes a portfolio of proposed missions that it believes can fit within NASA’s Earth science budget assuming it grows at the rate of inflation, but with “decision rules” for delaying missions should those budgets fall short.

The proposed missions, along with the existing “program of record” of missions in service today or under development, are intended to help scientists better understand the ways that the climate, water cycle, soil and other resources are changing, research the report argues can be uniquely done with satellites.

“Earth science and applications are a key part of the nation’s information infrastructure, warranting a U.S. program of Earth observations from space that is robust, resilient, and appropriately balanced,” the report states.

Read more