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Paunonen and Jackson (1988) demonstrated
that stepwise moderated regression provides a test
of interaction effects that protects the nominal
Type I error rate. However, the stepwise procedure
has also been characterized as failing to detect
interaction effects in empirical studies. This issue
has led to questions regarding the method’s
statistical power (Bobko, 1986; Zedeck, 1971) in
applied research. It is demonstrated that, because
of a research strategy frequently used in empirical
investigations, the probability of Type II error in
detecting a true interaction effect is unknown.
Specifically, the number of scale steps used in
measuring the dependent variable is shown to
result in a form of systematic error that can
spuriously increase or decrease the expected effect
size of the interaction. The problem is also discuss-
ed in the context of testing more complex models.
Recommendations for eliminating this problem in
future research designs are provided. Index terms:

information loss, interaction effects, Likert scales,
moderated regression, response transformation.

Stepwise moderated regression analysis was first
described by Saunders (1955, 1956) as a statistical
tool for assessing moderator effects at an individu-
al level of analysis. Shortly thereafter, Chow (1960)
described an identical procedure for assessing in-
teraction effects at a macro level of organizational

research. Since that time, the infrequency in the
applied psychological literature of findings sup-
portive of moderator effects has fueled concerns
over the power of the procedure (Zedeck, 1971).
More recently, Bobko (1986) and Venkatraman
(1989) have reported specific concerns regarding
the correspondence or &dquo;fit&dquo; between an interac-
tive conceptual framework and statistical pro-
cedures used to evaluate the framework.

The difficulty in detecting interactions has
often been attributed to multicollinearity among
predictor variables, particularly between a

multiplicative interaction and its respective com-
ponent main effects (Drazin & Van de Ven, 1985;
Sockloff, 1976a, 1976b). Unfortunately, recent at-
tempts to statistically control for multicollinearity
effects (e.g., Morris, Sherman, & Mansfield,
1986) have not proved fruitful (Cronbach, 1987).
Although Paunonen and Jackson (1988)
demonstrated that stepwise moderated regression
is not susceptible to inflation of Type I error in
the presence of multicollinearity, Cronbach (1987)
has recently called for more sensitive research
strategies for the detection of interaction effects.

Because the statistical procedure is sound,
what alternate research strategies should be pur-
sued ? At best, an investigator is confronted with
a well-formulated theory that dictates the strategy
of choice. For example, Bobko (1986) demon-

 at UNIV OF OKLAHOMA LIBRARIES on November 8, 2009 http://apm.sagepub.comDownloaded from 

http://apm.sagepub.com


258

strated a research strategy of specific cell con-
trasts for theories hypothesizing particular or-
dinal interactions. Unfortunately, as noted by
Cronbach (1987) and Venkatraman (1989), ap-
plied researchers are frequently faced with models
that are weakly specified.

Yet another strategy focuses on the reduction
of measurement error (Schwab, 1980). Busemeyer
and Jones (1983) demonstrated how measurement
error influences the power of moderated regres-
sion (see their Equation 9). Specifically, suppose
a regression model attempts to predict a criterion
(Y) from two independent variables (Xl, X,) and
their interaction. Busemeyer and Jones (1983)
demonstrated that measurement error in the in-

dependent variables X, and X, reduces the ex-
pected effect size of moderated regression (i.e.,
the difference in the squared multiple correlation,
R 2, between the multiplicative and additive

models) when a true multiplicative relationship
exists between X, and X2 and the dependent
variable Y. Using instruments with known
reliabilities and Busemeyer and Jones’ formula,
investigators can determine the expected effect
size if a true multiplicative relationship exists and
hence identify sample size needed to yield ade-
quate statistical power.

Cohen (1983) and Peters and Van Voorhis
(1940) demonstrated the impact of information
loss in the dependent variable on simple Pearson
product-moment correlations. This information
loss may occur when a continuous dependent
variable is reduced to a small set of categories
by the investigator in a known way. Cox (1950)
demonstrated how to minimize the loss of infor-
mation by selecting optimally-sized groups of ob-
servations taken from a continuous distribution.
All prior work in this area has focused on infor-
mation loss that occurs in some known fashion.

However, no study has examined the consequence
of persons responding to a discrete scale when,
in fact, the underlying construct is continuous.
This paper demonstrates that the number of op-
tions on the dependent scale will be a source of
unknown systematic error in moderated regres-
sion and, in turn, will spuriously increase or

decrease underlying statistical power.

Systematic Error and Information Loss

In applied research, most constructs of interest
are continuous. The actual number of options
available on response scales is often discrete. That

is, X,, X,, and Y are often measured on 1- to

5-point Likert scales (e.g., Stahl & Harrell, 1981;
Russell, 1985). Furthermore, note that if the three
variables are all measured on 5-point Likert
scales, then the empirical interaction term

X, X X2 is arithmetically defined by a 1- to

25-point scale. Thus, the measurement of Y (1 to
5) does not necessarily map, in any straight-
forward way, onto the 25-point interaction term
from the regression analysis. Information is lost
when a &dquo;coarse&dquo; response scale is used to

represent a near continuous or &dquo;fine&dquo; Y varia-
ble. As demonstrated below, this phenomenon
has direct implications for systematic contribu-
tions to error variation in the Likert response
format.

The original Likert method of scale construc-
tion involved the operationalization of con-
tinuous psychological constructs by summing
responses to questions of opinion (Likert, 1932).
Likert’s response scales contained five scale steps
(strongly agree, agree, undecided, disagree, and
strongly disagree). Likert and others demon-

strated that this procedure resulted in low levels
of random error variation (i.e., high reliability)
in resultant scale scores (Edwards & Kenney, 1946;
Likert, 1932; Rasmussen, 1989). Furthermore,
Cicchetti, Showalter, and Tyrer (1985) and
Jenkins and Taber (1977), using monte carlo
studies, demonstrated that no substantial reduc-
tion in random error occurs when the number of
scale steps exceeds a range of five to seven points.

However, systematic error may be introduced
when respondents are faced with a fine, true
underlying response and a coarse, overt 5-point
response scale. The systematic error occurs when
information from the fine/true response is lost
as it is placed on a coarse 5-point response scale.
Although Cohen (1983) and Peters and Van
Voorhis (1940) demonstrated the impact on sim-
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ple linear regression analyses when the in-

vestigator decides how to transform a continuous
Y variable into categories in some known way, the
impact of requiring respondents to perform the
transformation in some unknown way has not
been considered. It is hypothesized that the
increased range of potential values characteriz-
ing a &dquo;true&dquo; response in interactive regression will
lead to even greater information loss and larger
opportunity for systematic error than in simple
linear regression. Because people respond to on-
ly one question at a time, dependent scale scores
derived by summing responses to multiple Likert-
type items will also suffer from this information
loss.

For example, in a test of a multiplicative ex-
pectancy theory model, Stahl and Harrell (1981)
used a within-persons design with 11 levels of

valence, three levels of expectancy, and an

11-point dependent response scale. If respondents
used a multiplicative function of expectancy and
valence to arrive at estimates of motivational

force, they were faced with placing a 33-point
(3 x 11) latent response space onto an overt
11-point dependent scale. Interestingly, the fin-
dings of Stahl and Harrell failed to support a
multiplicative expectancy model for the majori-
ty of respondents.

In contrast, Arnold (1981) used a within-
persons design with five levels of each indepen-
dent variable (expectancy and valence) and 150
levels of the dependent variable (motivational
force). A multiplicative expectancy theory model
(force = expectancy x valence) would require
25 points in the dependent response space. Using
a 150-point response scale, Arnold certainly gave
respondents sufficient options on Y to portray
their &dquo;true&dquo; response, regardless of whether a
multiplicative or additive model was correct. In
contrast to Stahl and Harrell (1981), Arnold
found substantial evidence supporting the multi-
plicative formulation of expectancy theory. These
conflicting findings may be related to the in-
vestigators’ choice of response scales. The

presence of a true interaction effect can create
more latent responses than actual response op-

tions available. When respondents are faced with
a scale on the dependent variable that does not
have a sufficient number of response options, in-
formation loss is unavoidable.

The purpose of the analyses presented below
was to demonstrate how information loss caus-
ed by the overt response scale has an unknown
influence on effect sizes found in moderated

regression analysis. For purposes of explication,
two examples of hypothetical regression data were
generated in which the dependent scale (Y) did
not have a sufficient number of options to reflect
either a multiplicative effect or an additive effect.
An additive example demonstrates one way in-
formation might be lost when two variables are
additively combined.

Multiplicative Example

’The Data

Three sets of dependent responses were

generated for purposes of illustration. Dependent
scales Y,, Y,, and Y, were generated from the
same array of X, and Xz observations. Each in-
dependent variable was characterized by a 5-point
scale (1, 2, 3, 4, 5) in a fixed effects two-way
ANOVA design (each level of X, and X2 occurred
with equal frequency). Thus, X, and X2each had
a mean of 3 and standard deviation of 1.41 (each
value of X, was paired with every value of X2 so
that rl,z = 0.0).

The dependent scale (Yl) was created simply
by multiplying X, and X2 (YI = X, x X2). The
resultant response range was from 1 to 25 and

represented the &dquo;true score&dquo; response expected
from a respondent who used a multiplicative
combination of X, and X2, who responded to the
dependent variable response scale (Y,) with no
random measurement error, and who was given
a dependent variable response scale that permit-
ted all responses to be made without any infor-
mation loss.

Information loss in the second dependent scale
(Y2) was created in one step by multiplying Xl and
X2and then recoding the data into five equal in-
tervals. Specifically, all products of X, and X2be-
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tween 1 and 5 were assumed to elicit a mean overt

response on the Y, scale of 1, original Y, values
between 6 and 10 were assumed to elicit a mean
overt Y, response of 2, and so forth. This was
meant to represent what might happen when a
5-point dependent variable response scale is used
to portray a 25-point latent response space. With
Y, representing the respondent’s &dquo;true&dquo; original
response, Y2 represented the response expected
from a respondent who used a multiplicative
combination of X, and X,, who responded to the
dependent variable response scale (Y,) with no
random measurement error, and who was given
a coarse dependent response scale that caused in-
formation to be lost from the &dquo;true&dquo; Y, response.

Information loss in the third dependent scale
(Y,) was created in two steps by taking the square
root of the product of X, and X2 and rounding
to the nearest integer. Although it seems unlike-
ly that respondents can perform square root func-
tions &dquo;in their heads,&dquo; there is strong evidence
from laboratory investigations of psychophysical
scaling that respondents do perform the mathe-
matical equivalent of this procedure (Anderson,
1982; Birnbaum & Veit, 1974). There is no rea-
son to believe that the YZ or Y3 transformation is
more appropriate than the other. However, infor-
mation must be eliminated somehow if the
&dquo;true&dquo; response is to be placed on the five-point
scale, and Yz and Y, are both viable examples of
how information loss might occur. Table 1 con-

tains all possible combinations of X, and X2
variables with their associated Y,, Y2, and Y,
responses.

Analyses and Results

Stepwise moderated regression analysis was
performed for each of the dependent variables
Yj, Y,, and Y,. The effect size of interest was
&dquo;muli - ~dd from the following equations (Cohen
& Cohen, 1983):

Table 1

Complete Set of Independent Variables
and Dependent Variables for

Multiplicative Example

These effect sizes are reported in Table 2. First,
note that R 2 = 1.00 for Y&dquo; because Y, was con-
structed as the product of X, and X2with no ran-
dom measurement error. Further, when there was
no information loss due to limited response op-
tions, Ra,,a = .90 and the incremental effect for
the interaction term is R~1U1t - R add 2 = .10. In con-

trast, if the 5-point dependent response scale
caused information loss due to rounding latent
responses within equal-sized intervals (i.e., Y2),
the additive effect decreased and the expected

Table 2
Moderated Regression Effect Sizes
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effect size for the interaction increased to .180.
When the 5-point dependent response scale caus-
ed information loss through rounding the square
root of the latent response to the nearest integer
(i.e., ~3), the expected interaction effect size
decreased to .023.

It should be noted that the above univariate
distributions of X, and X2were uniform. When
the procedures were replicated under conditions
of normally distributed and/or correlated in-
dependent variables, the pattern of results was
the same.

It is of interest to note that relative to Y,, the
Radd for Y, was substantially lower and the Radd
for Y was slightly higher. R£~j, decreased for both
Y2 and Y,. It is the differential size of these

changes that contributed to inflation or deflation
of R~1U1t - Radd for the YZ and Y3 transformations.
There is no apparent theoretical explanation that
might account for the substantial drop in ~d for
Y,. However, Table 1 suggests that the Y2 trans-
formation resulted in a disproportionate amount
of the &dquo;systematic&dquo; error occurring in the lower
range of values, resulting in moderate range re-
striction (there were more Is for Y2 than for Y3).
Although both the Y2 and Y, transformations
diminished a strong rank ordering among the 25
possible &dquo;true&dquo; responses, the effect of the result-
ant &dquo;ties&dquo; or grouping of Y, values into the &dquo;1&dquo;

category of Y2 had a stronger attenuation effect
on Ra~,~ than was the case for Y,.

An Additive Example

The Data

Two sets of dependent responses were gener-
ated. Dependent scales Y, and YZ were generated
from the previous array of X, and XZ observa-
tions. As in the multiplicative example, each in-
dependent variable was characterized by a 5-point
scale with each value observed with equal fre-
quency.

The first dependent scale (Y,) was created by
simply adding X, and X2 (again, under the as-
sumption of no random measurement error). The
resultant response range was from 2 to 10 and in-

dividual scores represented the &dquo;true score&dquo; re-

sponse expected from a respondent who used an
additive combination of X, and X2, who respond-
ed to the dependent response scale (Y,) with no
random measurement error, and who was given a
dependent response scale that permitted all re-
sponses to be made without any information loss.

The second dependent response scale (Y,) was
created by summing X, and X2 and then recoding
the sum into five equal intervals (original Y,
responses of 1 and 2 were recoded as 1, responses
of 3 and 4 were recoded as 2, and so forth) under
the assumption of no measurement error. Hence,
similar to the multiplicative example, YZ
represented the response expected from a respon-
dent who used an additive combination of X,
and X2, who responded to the dependent
response scale (Yz) with no random measurement
error, and who was given a dependent response
scale that required information loss from the true
Y, response. Table 3 contains all possible com-
binations of X, and XZ variables with their
associated Y, and Y2 responses.

Analysis and Results

By definition, the regression of the additive
combination of X, and XZ onto Y, yields
R2 = 1.00. When the Y2 dependent variable was
regressed onto an additive combination of Xj and
X2, 1Zz = .951. Hence, the information loss im-
posed on Y2 would decrease the likelihood of
detecting a true additive effect. Although Peters
and Van Voorhis (1940) and Cohen (1983)
demonstrated that the coarseness of the depen-
dent scale will attenuate simple correlations, the
same transformation will also attenuate additive
main effects in multiple regression. Note that this
type of result is also demonstrated in the R,,2,, col-
umn of Table 2 for the Y2 dependent variable,
whereas the opposite effect-that is, an inflation
of jR~d&horbar;occurred for Y3 (however, dependent
variables in Table 2 are transformations of a

multiplicative model, not an additive model).

Discussion

The results clearly demonstrate that alternate
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Table 3

Complete Set of
Independent Variables and
Dependent Variables for

Additive Example

transformations of people’s original responses
can spuriously increase or decrease the expected
effect size in moderated regression analysis.
When a research design fails to provide a respon-
dent with an overt response scale that is at least
as large as their original response space, incor-
rect conclusions can be drawn from moderated

regression analysis. This is a critical finding in
the analysis of applied research in which the
testing of interactive theories is frequent (e.g., Ar-
nold, 1981; Prescott, 1986; Russell, 1985;
Venkatraman, 1989). As noted earlier, Cronbach
(1987) has called for alternative research strategies
that are sensitive to interactive effects. A possi-
ble research strategy is the a priori identification
of theoretical response domains before dependent
response scales are developed. In turn, this iden-
tification process should help guarantee that the

operational measurement of the dependent
variable contains a sufficient number of response
options.

Future research needs to examine the process
underlying how information loss occurs and how
characteristics of the measurement situation (e.g.,
anchor response format, predictor collinearity)
influence the transformation. It is also possible
that the size of the &dquo;reduction&dquo; task will deter-
mine the type of transformation used by the
respondent. For example, if Xl and X2 are mea-
sured on 1- to 10-point scales, an additive model
would yield a response space ranging from Y = 2
to 20 whereas a multiplicative model would yield
a response space ranging from 1 to 100. Respon-
dents may use different &dquo;reduction&dquo; processes to
make small versus large dependent &dquo;response
reductions.&dquo;

The current examples implicitly assume some
cognitive reduction process by the respondents;
that is, the respondents have to somehow

&dquo;squeeze&dquo; their latent dependent response to fit
it onto the discrete overt response scale (Ander-
son, 1982, labeled this the &dquo;response function&dquo;).
As one solution, researchers might consider us-
ing dependent scale formats that allow respon-
dents to use a continuous response scale.
Arnold’s (1981) and Norman’s (1986) use of a
mark on a line segment permitted them to use
the mark’s distance from the end of the line (in
millimeters) as a dependent scale value, effectively
creating a continuous scale score. Although creat-
ing a somewhat cumbersome coding task, this
procedure might permit more accurate reflection
of a &dquo;true&dquo; underlying multiplicative response.
With an increasing number of questionnaires be-
ing administered on personal computers, software
that will present a relatively unobtrusive means
of obtaining computer-generated response lines
on the screen, with the respondent asked to use
a mouse to place a mark on the line, might soon
be seen. The computer would then generate a very
precise measurement of the mark’s position on
the line, effectively eliminating the awkward re-
quirements of using a ruler to quantify each per-
son’s response (the procedure has been used by
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Arnold, 1981, and Norman, 1986).
An additional approach to overcoming the

cognitive problem in applied research of response
reduction that is induced by scale coarseness
would require investigators to shift their initial
focus from the dependent variable to the indepen-
dent variables. Specifically, investigators must
identify the number of conceptually distinct levels
possible for each independent variable before
developing measurement scales for the dependent
variable. For example, Arnold (1981) used the
results of earlier work by Shanteau (1974) to iden-
tify five levels of expectancy. Under these cir-
cumstances, manipulation checks become doubly
important to ensure that each independent vari-
able has its intended effect and that the expected
number of levels of effect are present. If

manipulation of an independent variable yields
more &dquo;levels&dquo; than anticipated, moderated re-
gression results may be essentially uninter-

pretable.
Busemeyer and Jones (1983) noted that when

respondents go through some unknown trans-
formation between their true response and the
observed response, interpretation of moderated
regression analysis becomes problematic. The
current study reaffirmed and extended this no-
tion by showing how systematic response error
is produced in the instance in which the number
of scale options on Y does not match the num-
ber of possible responses created by the multipli-
cation of Xl and X2. The conflicting results of
Arnold (1981) and Stahl and Harrell (1981), and
potentially of any other empirical tests of inter-
active theories, may be due to the different

number of dependent scale options used in each
study.

As noted above, the current examples have all
been depicted within a cognitively-oriented inter-
action model (Expectancy Theory). A multiplica-
tive relationship was further assumed between
fixed treatment effects (five &dquo;fixed&dquo; levels of X,
and X2 were specified a priori) and a dependent
measure obtained by asking questions of the
&dquo;treated&dquo; sample. These results should general-
ize to more complex models (e.g., conjunctive or

disjunctive decision models), to random effects
designs, and/or to archival measures as the

dependent variable.
A more complex model would involve both ad-

ditive and multiplicative effects, that is,
Y = X, + X2 + X, x X2. Using this model,
data were generated to create an initial Yi, &dquo;true&dquo;

dependent response scale (with a maximum value
of 5 + 5 + 5 x 5 = 35), and a Y2 dependent
response scale in which all values of Y, between
1 and 7 were coded as 1, values between 8 and
14 were coded as 2, and so forth. For Yi,
Rm&dquo;,t = 1.00 (by definition) and Radd = .941,
yielding a difference of .059. For Yz, R2.,,, = .949
and Iza~d = .900, yielding a difference of .049.
Hence, the same &dquo;grouping&dquo; transformation
used for Y2 throughout these examples resulted
in an inflated interaction effect size for a &dquo;true&dquo;

multiplicative model, and an attenuated interac-
tion effect size for a &dquo;true&dquo; combined multi-

plicative-additive model. The same type of trans-
formation will differentially impact the ability to
detect alternate &dquo;true&dquo; models. Models with
three- or four-way interaction terms and/or

exponential functions will drastically increase the
number of possible values in the dependent
variable space. Accurate testing of these more
elaborate functions would require a nearly con-
tinuous dependent response scale.
A similar situation arises when random effects

designs are considered. If the independent vari-
ables are truly continuous and the levels observed
by the investigator are specific to the sample at
hand (e.g., the primary valence variable of Stahl
& Harrell, 1981), the investigator is again faced
with an infinite dependent variable space and the
need to use a continuous dependent response
scale. Thus, for all but the simplest models, in-
vestigators should explore nontraditional means
of operationalizing their dependent variables.
These might include the cumbersome and labor
intensive coding required to measure respondents’
marks placed on an anchored line segment (Ar-
nold, 1981), the development of optical scanning
technology or software that accurately measures
the distance down a line segment that respon-
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dents mark, or exploration of magnitude estima-
tion procedures.

The examples throughout this paper focused
on psychological dependent measures that require
responses from people. Hence, it was implicitly
assumed that respondents reduce or &dquo;squeeze&dquo;
their &dquo;fine&dquo; latent dependent response to fit on
a &dquo;coarse&dquo; dependent response scale. These ar-
guments should also apply to studies using de-
pendent variables &dquo;reduced&dquo; in some other man-
ner. For example, Prescott (1986) examined the
interaction effect of organizational environment
and corporate strategy on an organization’s
return on investment (ROI) using archival data.
In this instance, ROI was captured with a continu-
ous measure in monetary terms. However, what
if the archival data had been reduced to intervals
or ranges of ROI values, a common condition in
archival databases available to organizational
psychologists? Although the term &dquo;response
reduction&dquo; could be used to describe informa-
tion loss due to coarse operationalizations of a
fine dependent variable space, there are many
ways in which a coarse operationalization can
lead to information loss. Archivists making deci-
sions of convenience to use coarse categories to
summarize continuous data (e.g., as in Y2) are
but one example. Applied researchers must be
alert to alternate sources of information loss if

they are to accurately test all but the simplest
models. Again, the interest is not in knowing a
priori the optimal number of groupings to

minimize information loss (Cox, 1950) or in iden-
tifying the effect that all possible transformations
might have on the ability to detect nonlinear
models. Rather, the goal is to prevent spurious
conclusions from being drawn when research de-
signs unintentionally lose critical information
from the dependent variable, through response
reduction or any other means.

Related Measurement Issues

As noted above, it could be argued that in
survey research the measurement of the depen-
dent variable becomes continuous when people’s
responses are summed across multiple dependent

scale items. For example, 10 dependent scale items
with 1- to 5-point response scales are typically
summed to yield a dependent scale score rang-
ing from 10 to 50. Unfortunately, although an
investigator may sum responses across items to
yield a composite dependent scale, responses are
made sequentially to each item. Adding item
responses to form a dependent scale score effec-
tively controls for the effects of random in-
fluences on people’s responses. However, it does
not necessarily negate any information loss or
&dquo;reduction&dquo; that might have occurred in their
item responses prior to summation into a single
scale score. In fact, the systematic error may
cumulate across the sum. Again, more basic
research is needed concerning the response reduc-
tion process.

Finally, it should also be noted that the effect
of information loss described here is different
from simple range restriction. Range restriction
occurs when a measure contains observations

from only a portion of the potential range of
responses. Correlations between a measure suf-

fering from range restriction and any predictor
variable will then be attenuated. In contrast, the
information loss due to &dquo;response reduction&dquo;
does not eliminate observations from a portion
of the potential range of responses. The response
reduction involves the respondent’s placement of
all potential responses on a scale that does not
have enough options to differentiate among all
of the responses. The variance is not necessarily
reduced; rather, the number of options within a
given range is limited. The results here indicate
that, depending on how people &dquo;reduce&dquo; their

responses, the result could yield a spurious at-
tenuation or increase in effect size.

The analyses presented here demonstrate that
the number of response options on the depen-
dent scale can severely influence the effect sizes
in moderated regression analysis. As demonstrat-
ed above, it is critical to give respondents enough
space when searching for moderator effects in ap-
plied psychological research and/or to be alert for
sources of information loss in archival data. More
basic research is needed regarding (1) how peo-
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ple actually reduce &dquo;true&dquo; continuous responses
to yield an overt response to discrete response
options and (2) the relative efficacy of using con-
tinuous response scales to operationalize depen-
dent responses.
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