
Bootstrapping   1 
 

Running head: BOOTSTRAPPING MODERATED REGRESSION 

To Log or Not to Log: Bootstrap as an Alternative to Parametric Estimation of Moderation Effects 

in the Presence of Skewed Dependent Variables 

 

Craig J. Russell 

University of Oklahoma 

 

Michelle A. Dean 

University of North Texas 

 

 

 

 

Russell, C.J. & Dean, M.A. (2000). To log or not to log: Bootstrap as an 

alternative to parametric estimation of moderation effects in the presence of skewed 

dependent variables.  Organizational Research Methods, 3, 167-185. 
 

Author Note 

 Craig J. Russell, Price College of Business; Michelle A. Dean, Department of Management. 

We would like to thank Philip Q. Bobko for his comments on an earlier version of this 

manuscript. 

Correspondence concerning this article should be addressed to Craig J. Russell, Price 

College of Business, 107 Brooks Drive, University of Oklahoma, Norman, OK  73019-0450.  

Electronic mail may be sent via internet to cruss@ou.edu. 



Bootstrapping   1 
 

Abstract 

When gross deviations from parametric assumptions are observed, conventional data 

transformations are often applied with little regard for substantive theoretical implications.  One 

such transformation involves using the logarithm of positively skewed dependent variables.  Log 

transformations were shown to severely decrease estimates of true moderator effects using 

moderated regression procedures in a Monte Carlo simulation.  Estimates of moderator effect 

sizes were substantially better estimates of the true latent moderator effect (i.e., larger by a 

multiple of 2.6 to 534) when estimated using a simple percentile bootstrap procedure in the 

original, positively skewed data.  Conclusions regarding the presence or absence of a true 

moderator effect using a simple bootstrap procedure were unaffected by violation of parametric 

assumptions in the original, positively skewed data.  In contrast, conclusions when moderated 

regression analysis was performed on a log transformed dependent variable severely increased 

Type II error.  Implications are drawn for applied psychological and management research. 
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To Log or Not to Log: Bootstrap as an Alternative to Parametric Estimation of Moderation 

Effects in the Presence of Skewed Dependent Variables 

 

 At one time or another almost all investigators in applied psychological and management 

research have been concerned by assumptions required of common parametric statistical tests.  

Investigators typically assume their samples were drawn from a single population and rely on the 

power of the Central Limit Theorem and other parametric assumptions to draw inferences about 

latent relationships within that population.  When violations of parametric assumptions are 

severe, investigators often use some data transformation designed to minimize the violation.  For 

example, all three empirical studies reported in a recent special Academy of Management 

Journal forum on managerial compensation performed log transformations on compensation data 

(Conyon & Peck, 1998; Finkelstein & Boyd, 1998; Sanders & Carpenter, 1998) with no mention 

of the purpose or rationale behind these transformations.  Presumably the log transformations 

were done to address the presence of heteroscedasticity, i.e., the lack of independence between 

the mean of Y given X ( Y |Xi ) and the variance of Y given X ( i
2
y Xσ ) that coincides with 

extreme positive outliers or severe positive skew (Winer, 1974).  Winer’s 1974 text has had a 

pervasive influence on organizational research as reflected in the fact it is the most highly cited 

publication in the Social Science Citation Index between 1957 and 1997 (Bennett, 1999) -- it is 

difficult to underestimate the effect Winer’s text (and its subsequent updates) has had on 

organizational researchers.  It could be argued that performing log transformations on positively 

skewed dependent variables has become a “convention” within applied psychology and 

management research.   
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One of the following characteristics is required of studies using parametric ordinary least 

squares (OLS) procedures to examine linear relationships between variables X and Y: 1) X and 

Y are random bivariate normal or 2) X is "fixed" and e is normal, where 01iii bXbYe −−= .  In 

the former case, X is "random" in the sense that investigators do not specify or control levels of 

X treatment effects in advance.  Instead, X values observed occur at a frequency dictated by the 

population probability distribution for X.  Common survey methods employed in research 

examining voluntary employee turnover (e.g., Mobley, Griffeth, Hand, & Meglino, 1979), job 

satisfaction (Smith, Kendal, & Hulin, 1969), performance prediction (Bray, Campbell, & Grant, 

1974; Owens & Schoenfeldt, 1979) and executive compensation (Finkelstein & Boyd, 1998) 

provide examples of random effects designs.  Importantly, when X and Y are distributed 

bivariate normal, probabilistic inferences (e.g., conducting hypothesis test of Ho: ρ = 0, or 

estimating confidence intervals 
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Equation 1 

If X is not normally distributed1, as in the latter case, one may still use the Central Limit 

Theorem to assume 2
yσ |Xi is normally distributed in order to test hypotheses about ρ.  In these 

circumstances, X is often a "fixed effect" that takes on values occurring in some known 

frequency other than what one would have expected if values of X were drawn at random from 

the population (e.g., values of X the investigator selected for purposes of manipulation).  
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Importantly, regardless of study design, traditional parametric procedures cannot be used in 

conducting hypothesis tests or estimating confidence intervals if the true probability density 

function for prediction error (e) is unknown. 

As noted above, one common violation of parametric assumptions occurs when the 

variance of Y given X ( i
2
y Xσ ) is a function of the conditional mean ( Y |Xi).  Efforts examining 

severely positively skewed Y distributions routinely occur in applied psychological research, 

particularly compensation research.  Skewed compensation distributions are caused by a number 

of factors including the increasing span of pay ranges as the pay range mid-point increases 

(England & Pierson, 1990)2 and the extreme levels of executive compensation typically reported 

in U.S. corporations.  Both factors result in a lack of independence between iX|Y  and i
2
y X|σ , 

violating the homoscedasticity assumption (Winer, 1974). 

Winer (1974, pp. 398-401) described a number of transformations that "correct" or at 

least lessen violations of some parametric assumptions.  Log transformations of variables 

demonstrating highly positive or negative skew yield a more bell-shaped frequency distribution, 

where Y |Xi and σe are relatively uncorrelated.  Winer (1974, p. 400) noted log transforms are 

particularly effective in stabilizing conditional variance of Y given X when independence of 

error terms is violated due to 
2
i

22
y Xkσ

i
= , or when Y has a great deal of positive skew (Olds, 

Mattson, & Oldeh, 1956).3  

The usual effect of such transforms is to lessen prediction error for values of Y occurring 

at the extreme "tail" of the positively skewed dependent variable, consequently increasing 2
xyr in 

additive models used to predict log Y.  The SYSTAT6.0 for Windows: Statistics manual 

described one such example (SPSS, Inc., 1996, pp. 252-257), where gross domestic product 
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(GDP) per capita (X) was used to predict military spending (Y) in a sample of 57 countries.  In 

this example, 2
xyr  goes from .417 to .734 in the presence of log transformation.   

Importantly, the resultant model using the transformed data is elog10++= GDP1010 Xlogββ
mil$ 10Y , 

which does not technically adhere to OLS characteristics (e.g., unbiased minimum variance 

parameter estimates).  This model is perfectly serviceable if prediction is the investigator's main 

concern -- inferences about accuracy of prediction can be drawn from rxy.  Note, probabilistic 

inferences cannot be drawn for rxy, bo, b1, or Ŷ unless one assumes the log10e term in 

elog10++= GDP1010 Xlogββ
mil$ 10Y is normally distributed.  We are aware of no research stream (theory-

based or otherwise) that holds the log10 of e is normal.4  Regardless, the model must have some 

theoretical meaning if explanation is the investigator's main concern.  For example, it is unclear 

what theory or policy implications should be drawn from finding the log of salary is 

differentially related to organizational tenure for men and women.5  The authors are unaware of 

any studies examining interactive models providing a theoretical rationale justifying nonlinear 

(monotonic or nonmonotonic) transformations in applied psychological or management research 

(though concepts like the diminishing marginal utility of money may provide such a rationale in 

the future).  Enhanced statistical elegance achieved via nonlinear transformations has not been 

accompanied by theory-based rationale justifying its use.  

Nonlinear transformations can cause more uncertainty in interpreting tests of moderation 

than they resolve.  Investigators generally need to estimate sample sizes required for replications 

and extensions of past research.  Investigators examining previously reported data on the GDP-

military spending relationships will solve 
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sample size when 2
xyr = .417 that is approximately four times as large as the sample required 

when 2
xyr = .734 at α = .05.  Again, absent theoretical rationale, arguments can be mounted for 

either estimate. 

Importantly, nonlinear (monotonic and nonmonotonic) transformations of original data 

create a number of problems for OLS applications used to detect moderator effects.  Busemeyer 

and Jones (1983) demonstrated monotonic transformations could be found that cause Y values 

generated from a truly additive model (e.g., Ŷ  = b0 + b1X1 + b2X2) to yield support for a 

multiplicative model (e.g., Ŷ  = b0 + b1X1 + b2X2 + b3X1X2) and vice versa.  Hence, reports of 

significant and nonsignificant interaction effects after having performed log transformation on Y 

remain open to alternative interpretation (cf. Henderson & Fredrickson, 1996; Sanders & 

Carpenter, 1998). 

In sum, investigators often face circumstances where data is clearly not bivariate normal, 

e is not normal, and/or heteroscedasticity is present.  Nonlinear transformations generate 

unknown levels of distortion in the many estimates of moderator effects required to test theories 

in management and applied psychology (Busemeyer & Jones, 1983; Russell & Bobko, 1992).  

Investigators continued use of nonlinear transforms to test moderator effects (e.g., Henderson & 

Frederickson, 1996; Kuhn & Sweetman, 1998; Sanders & Carpenter, 1998) will result in 

literatures characterized by "mixed" findings containing frequent Type I and II errors.  This will 

be especially true when other investigators do not use nonlinear transformations in studying the 

same phenomena (e.g., Gomez-Mejia, Tosi, & Hinkin, 1987).  Severe consequences for theory 

development will result. 

The bootstrap is a relatively new method of empirically estimating characteristics of 

population distributions from sample data (Efron, 1979) that holds remarkable implications for 
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these applied research issues.  Unfortunately, Mooney and Duval (1993) noted "the bootstrap is . 

. . foreign to most social scientists schooled in the traditional parametric approach to inference" 

(p. 27).  The current study briefly reviews the bootstrap literature and reports the results of a 

Monte Carlo simulation demonstrating how log transformations can yield spuriously low 

estimates of moderator effect sizes (i.e., ∆R2).  Finally, a bootstrap approach to detect interaction 

effects when authors would otherwise employ log transformations and traditional OLS 

techniques is presented and implications for applied psychological and management research 

offered. 

Bootstrap Estimation Procedures 

Bootstrapping holds promise as a statistical estimation technique yielding precise 

estimates of population distributions from sample data.  Bootstrapping estimates the population 

distribution of a statistic (e.g., rxy) by iteratively resampling cases from a set of observed data.  

Basically, B "bootstrap" samples of size N are taken with replacement from the original sample 

of size N and saved to a file.  An investigation using B = 1,000 bootstrap samples of size N is 

able to approximate the actual sampling distribution that would have been obtained if multiple 

independent samples of size N were drawn from the population (Efron & Tibshirani, 1993).  

 There are many advantages to using the bootstrap technique.  First, it is not restricted by 

the normality assumptions of parametric tests.  The percentile bootstrapping method (Efron & 

Tibshirani, 1993, Chapter 13) generates information about the latent population distribution 

permitting estimation of confidence intervals (CI) directly from the bootstrapped sampling 

distribution (e.g., if B = 1,000 bootstrap samples are taken, the bootstrap correlations {rb} 

representing the 25th and 975th largest values constitute the lower and upper points of a 95% CI).  

Graphical interpretation of rb frequency distributions also yields insight into characteristics of the 
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latent population distribution (Efron & Tibshirani, 1993).  When the sample is drawn from a 

population with a single value of ρ, the Central Limit Theorem dictates the rb frequency 

distribution will rapidly approximate the normal distribution as B and N increase.   A multi-

modal rb frequency distribution would suggest the sample was drawn from multiple populations, 

each with its own value of ρ.  Second, information concerning the form of the original sample is 

retained, with no loss of distributional information.  Rasmussen (1987) noted loss of information 

does occur when nonparametric techniques convert data to ranks.  Lunneborg (1985) described 

bootstrapping as falling between parametric and nonparametric procedures for making 

probabilistic inferences.  

Rasmussen (1987) presented the following simple example of a bootstrap procedure.  

Suppose a researcher wants to test the null hypothesis that ρxy = 0 between first year grade point 

averages (GPA) and Graduate Record Exam (GRE) scores using data obtained from 10 graduate 

students (HO: ρGPA,GRE = 0).  First, an initial bootstrap sample (B1) is randomly drawn with 

replacement from these ten observations, yielding the possibility of some observations being 

represented more than once in the bootstrap sample while other observations may not be 

included.  A single bootstrap sample may include the following cases: 5, 2, 8, 6, 2, 7, 9, 6, 1, and 

2.  Note, due to random sampling with replacement, case "2" was included more than once while 

case "3" was not included in this first bootstrap sample (B1).  The 10 cases may result in a 

correlation of, say, 
ibr = .59.  This procedure is repeated a large number of times (e.g., B = 1,000) 

and each rb is saved to a separate file.  Second, the bootstrap correlations (rb) are rank ordered 

with the 25th and 975th 
ibr correlations representing 95% confidence interval end points.  Finally, 

the null hypothesis Ho: ρGPA,GRE = 0 is tested by determining whether 0 falls within the 

confidence interval (Rasmussen, 1987).  
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 Studies examining similarities in results obtained from bootstrap and normal theory 

approaches when parametric assumptions are met test the bootstrap's ability to estimate true 

latent population distributions (e.g., Diaconis & Efron, 1983; Efron, 1985, 1986; Lunneborg, 

1985).  These studies resulted in bootstrap statistics (e.g., estimates of confidence intervals) that 

were extremely close to those generated from parametric approaches.  Bickel and Freedman 

(1981; Freedman, 1981) demonstrated the bootstrap was asymptotically valid for many statistics 

with known population probability distributions (e.g., t and OLS regression statistics).  However, 

the procedure is perhaps of most value in drawing inferences about statistics with unknown 

population probability distributions (e.g., medians, or "mixed" samples drawn from multiple 

populations). 

 Some issues remain unresolved in using bootstrapping to conduct hypothesis testing, 

most revolving around the relative accuracy of parametric versus bootstrap procedures in 

estimating probability intervals at the extreme tails of known (i.e., normal) distributions.  

However, the simple percentile bootstrap method of estimating confidence intervals described 

above provides "good theoretical coverage properties as well as reasonable stability in practice" 

(Efron & Tibshirani, 1993, p. 169).  Good "theoretical coverage" refers to confidence intervals 

that 1) accurately estimate probability of the population parameter falling within the confidence 

interval and 2) divide "coverage error" equally across the two tails.6   

Empirical comparisons of bootstrap and traditional OLS regression procedures' abilities 

to detect moderator effects when the dependent variable is positively skewed are presented 

below.   
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Monte Carlo Simulation 

Design 

In typical random effects designs investigators do not know how independent variables 

and prediction error are distributed.  In fixed effects designs, investigators typically control or 

specify independent variable levels, though the dependent Y distribution will be a function of the 

independent variable(s) and prediction error (e) distributions.  Classical measurement theory 

presumes eYY
iTi += , where 

iTY is the true latent value of Y for person i.  When 
iTY  is a 

function of some X (e.g., eXbbY 110 ++=  or eXXbXbXbbY 21322110 ++++= ),  X1, X2, 

or e must be nonnormal in order for observed Yi to be nonnormally distributed.  Consequently, to 

simulate the kinds of data investigators might encounter in either random or fixed effect designs, 

data were generated in nine Monte Carlo simulations where independent variables X1 and X2 and 

prediction error (e) systematically varied across normal, uniform, and χ2 distributions.  Normal 

distributions were selected to simulate multivariate normal conditions in random effects designs.  

Uniform distributions were selected to simulate fixed effect experimental designs.  χ2 

distributions for X and e simulated positively skewed Y distributions such as those found in 

compensation research. 

Sample 

 Simulation data were generated for combinations of X1, X2, and e distributions using the 

SYSTAT9 computer package.  Five thousand samples of N = 113 paired X1, X2 observations 

were drawn at random from all possible combinations of normal, uniform, and χ2 population 

distributions X1, X2, and e (Guzzo, Jette, & Katzell, 1985, reported a mean N = 113 across 

studies in a meta-analysis of compensation-based intervention programs).  Results are only 

reported for conditions where X1 and X2 were drawn from identical population distributions, 
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though results when X1 and X2 were drawn from different population distributions were 

consistent with those reported below.7  Note, 5000 samples of N = 113 were drawn for every 

combination of X, Y, and e distributions described below as per Mooney’s (1997) suggestions 

for conducting Monte Carlo simulations, resulting in nine sets of 5000 samples of N = 113.  All 

aspects of the Monte Carlo simulation were replicated using 5000 samples of N = 226 and N = 

56 (i.e. using samples twice and one half as large as N = 113).  Identical patterns of results 

emerged and are available from the first author on request. 

 When X1 and X2 observations were drawn at random from a normal population 

distribution, µ and σ were set at µ = 3 and σ = 1.  Variables X1 and X2 within each data set were 

then rounded to the nearest integer (yielding values ranging from 1 to 5, i.e., five point Likert 

scales) in order to simulate measurement circumstances commonly encountered in applied 

psychological and management research.  Uniform X1 and X2 data sets were drawn from a 

population containing integer values between 1 and 5, inclusive.  Additional X1 and X2 data sets 

were drawn from Χ2 distributions with three degrees of freedom.  These steps resulted in nine 

Monte Carlo data sets when the three possible X distributions (normal, uniform, χ2) were 

combined with the three possible e distributions (normal, uniform, χ2). 

Three dependent variables were generated within each data set to reflect large, medium, 

and small effect sizes.  Equations 2, 3, and 4 were used to generate values for Y1, Y2, and Y3 

within each of the nine data sets: 
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.75eX.25XY

.50eX.50XY
.25eX.75XY

213

212

211

+=
+=
+=

 

Equations 2, 3, & 4 

Under the e = normal condition, prediction error e was drawn from a normal population with a 

mean and standard deviation set equal to the mean and standard deviation of the X1X2 product 

term with which it was paired.  Under the e = uniform condition, e was randomly drawn from a 

uniform population distribution ranging from 1 to 20.  Under the e = χ2 condition, e was randomly 

drawn from a χ2 population distribution with 9 degrees of freedom (where 9 is the mean 

population value for all X1X2 product terms regardless of sample X1, X2 distribution 

characteristics).   Hence, three dependent variables Y1, Y2, and Y3 reflecting large, medium, and 

small moderator effect sizes were available to be examined within each of the nine data sets. 

Analyses 

All tests of interaction effects used moderated regression analysis (Bobko, 1995; 

Darlington, 1968; Saunders, 1955, 1956).  The F-test of Ho: ∆R2 = 0, where 

2
additive

2
tivemultiplica

2 RR∆R −= for the equations 21322110 XXbXbXbbY +++=ˆ  and 

22110 XbXbbY ++=ˆ , respectively, constitutes the test of an interaction effect when X1 and X2 are 

interval scale measures.  The strategy and organizational theory literatures commonly refer to this 

as the Chow test (Chow, 1960). 

To provide a point of reference, samples of N = 50,000 for each combination of X1, X2 

distribution were generated separately for purposes of estimating E(∆R2) when e = 0.  When X1 

and X2 were normal, uniform, and χ2,  E(∆R2) = .057, .077 , and .256, respectively.  These values 

should be considered asymptotes or what would occur under circumstances of perfect, error free 
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prediction.  The addition of prediction error will slowly decrease E(∆R2), e.g., if when X1 and X2 

are distributed as χ2 the true prediction model is .9eX.1XY 21 += , then clearly E(∆R2) ≠ .256.  

Regardless, it should be noted that these are expected values of ∆R2 and actual values observed 

might be larger or smaller when Y does or does not include prediction error (e.g., Russell & 

Bobko, 1992, observed ∆R2 greater than E{∆R2} for some subjects). 

Results 

   Table 1a reports results of moderated regression analyses performed on the three effect 

sizes (Y1, Y2, and Y3) in the nine different combinations of X and e distributions (i.e., normal, 

uniform, and χ2 X1 and X2 distributions paired with normal, uniform, and χ2 e distributions).  

Moderator effect sizes are captured by the median ∆R2 column, containing the 2500th largest 

value of ∆R2 obtained from the 5000 samples of N = 113.  While F statistics testing Ho: ∆R2 = 0 

can be derived for median ∆R2 values, only the ones derived for normally distributed prediction 

error meet parametric assumptions and are interpretable (i.e., statistics reported in the shaded 

area of Table 1a).  Regardless, the 2.5 and 97.5 percentile values of ∆R2 were identified within 

set of 5000 Monte Carlo N = 113 samples.8  As the expected value of the F statistic testing Ho: 

∆R2 = 0 is F = 1.0, one would reject Ho using logic underlying simple percentile bootstrap 

applications when the F statistic (i.e., 

4)-(113
R(1

3)-(4
∆R

F 2
tivemultiplica

2

1,109 )−
= ) for the moderator effect 

cutting off the lower 2.5% of the 5000 ∆R2 is greater than 1 (i.e., when F = 1.0 falls outside of 

the 95% ∆R2 CI).  Median values of ∆R2 reported in Table 1 for which the lower 2.5 percentile 

values generated F > 1.0 are indicated with asterisks. 
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___________________________ 

Insert Table 1 about here 

___________________________ 

Interestingly, profiles of ∆R2 for large, medium, and small effect sizes for interpretable 

equations in Table 1a (i.e., those meeting OLS assumptions) are .047/.024/.006, .067/.041/.009, 

and .221/.191/.087 for X1, X2 distributions drawn from normal, uniform, and χ2 populations of 

X1 and X2, respectively.  Not surprisingly, smaller values of ∆R2 are observed as the effect size 

decreases across Y1, Y2, and Y3.  The pattern of effect sizes across normal, uniform, and Χ2 

distributions is consistent with McClelland and Judd's (1993) demonstration that multiplicative 

effect sizes are maximized in designs using extreme values of X1 and X2.  Normally distributed 

X1 and X2 will have the fewest extreme X1X2 observations due to low probabilities in the 

extreme tails of the normal distribution.  Uniform and χ2 distributions for X1 and X2 will have 

increasingly more frequent extreme observations in the tails of an X1X2 distribution, 

respectively.  

If X1, X2, or e are highly positively skewed, as they are when drawn from 

2
3df =χ populations, Y will demonstrate some skewness.  Investigators following Winer’s (1974) 

convention would perform a log transform on Y in hope of permitting probabilistic inferences 

possible when parametric assumptions are met.  Table 1b reports moderated regression results 

when Y1, Y2, and Y3 were subjected to a log10 transformation for the five X1, X2, and e 

combinations involving skewed χ2 distributions (when X1, X2, or e are positively skewed, Y will 

be positively skewed).  Moderated regression effect sizes for the non-transformed Y1, Y2, and Y3 

(Table 1a) are 2.7 to 15 times larger than effect sizes observed for log transformed Y1, Y2, and 

Y3 (Table 1b).  Perhaps most interestingly, effect sizes for the one data set that meets parametric 
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assumptions (X1 and X2 distributed as χ2, e distributed normally) go from ∆R2 = .221 to ∆R2 = 

.032 for Y1 and log10Y1, respectively, from ∆R2 = .191 to ∆R2 = .041 for Y2 and log10Y2, 

respectively, and from ∆R2 = .087 to ∆R2 = .025 for Y3 and log10Y3, respectively.  Hence, 

moderated regression effect sizes are 3.5 to 6.9 times larger and more likely to correctly detect 

the true “latent” population moderator effect when estimated from the nontransformed data, 

though investigators following convention would have log transformed Y1, Y2, and Y3 before 

conducting the analyses.  The stronger the moderator effect, the larger the difference between 

effect sizes derived from nontransformed versus log transformed Y’s. 

 In sum, moderated regression effect sizes derived from a Monte Carlo simulation of 5000 

N = 113 samples drawn from normal, uniform, and χ2 e and X distributions are 2.7 to 15 times 

more likely to detect true latent moderator effects (i.e., reject Ho: ∆R2
 = 0) when the dependent 

variable has not been subjected to a log transformation.  The final portion of this study 

demonstrates how primary researchers would apply a simple bootstrap procedure in analyzing 

data obtained from a single sample and confirming implications of the Monte Carlo results (i.e., 

that inferences drawn from bootstrap-generated confidence intervals about moderator effects are 

expected to exhibit less Type II error). 

Bootstrap Demonstration 

Samples 

 As a rule, researchers generally face circumstances in which they have data gathered 

from a single sample, not 5000 samples.  Hence, to simulate what individual researchers 

typically encounter, nine samples of N = 113 paired X1, X2 observations were created at random 

from normal, uniform, and χ2 population distributions using the SYSTAT9 computer package.  

When X1 and X2 observations were drawn at random from a normal population distribution, µ 
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and σ were set at µ = 3 and σ = 1.  As in the Monte Carlo simulation and consistent with 

measurement circumstances commonly encountered in applied psychological and management 

research, X1 and X2 data sets were rounded to the nearest integer yielding values from 1 to 5.  

Uniform X1 and X2 data sets were drawn from a population containing integer values between 1 

and 5, inclusive, yielding 3.012X1 = , 1.438σ
1X = , and 2.889X2 = , 1.394σ

2X = , respectively.  

Finally, X1 and X2 data sets were drawn from Χ2 distributions with three degrees of freedom, 

yielding 2.986X1 = , 2.344σ
1X =  and 3.008X2 = , 2.660σ

2X = .  Three dependent variables 

were generated within each sample using Equations 2, 3, and 4 described in the Monte Carlo 

simulation above.  Error terms (e) were drawn from the same populations as described in the 

Monte Carlo simulation above, with their means and standard deviations set equal to the X1X2 

product term means and standard deviations.   

Analyses 

Tests of interaction effects using moderated regression analysis were performed using 

dependent variables Y1, Y2, Y3, LogY1, LogY2, and LogY3 in each of the nine samples.  

Additionally, B = 1000 bootstrap estimates of ∆R2 were derived for all dependent variables in 

each of the nine samples using the percentile bootstrap method described above.9 

Results 

   Table 2a reports results of moderated regression analyses performed on the nine samples 

of N = 113 containing different combinations of X1, X2, and e distributions (i.e., normal, 

uniform, and χ2 distributions of X1 and X2 paired with normal, uniform, and χ2 e distributions).  

While F statistics are reported for moderation effects in all nine combinations, only the three 

derived for normally distributed prediction error meet parametric assumptions and are 
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interpretable (i.e., statistics reported in the shaded area of Table 2a).  Moderator effect sizes are 

captured by the ∆R2 column (the F statistic tests Ho: ∆R2 = 0, Bobko, 1995; Darlington, 1968). 

__________________________ 

Insert Table 2 about here 

___________________________ 

∆R2 for Y1 in the three interpretable equations in Table 2a are .049, .068, and .216 for X1, 

X2 distributions drawn from normal, uniform, and χ2 populations, respectively.  This profile of 

effect sizes is again consistent with the observation that normal X1, X2 will have the fewest 

extreme X1X2 observations due to low probabilities in the extreme tails of the normal distribution 

and results reported in the Monte Carlo study reported above. 

Figure 1 demonstrates when X1, X2, or e were highly positively skewed, as they are when 

drawn from 2
3df =χ populations, Y exhibited some positive skewness.  Investigators following 

convention would perform a log transform on Y hoping to permit the probabilistic inferences 

possible when parametric assumptions are met.  Table 2b reports moderated regression results 

when Y was subjected to a log10 transformation for the five X1, X2, and e combinations with 

skewed χ2 distributions (i.e., skewed Y distributions appear only when X1, X2, or e distributions 

were positively skewed).  Consistent with the Monte Carlo findings reported above, moderated 

regression effect sizes for the original non-transformed data were two to seven times larger than 

effect sizes observed for log transformed data.  Effect sizes for the one data set that met 

parametric assumptions (X1 and X2 distributed as χ2, e distributed normally) went from ∆R2 = 

.216 to ∆R2 = .030 when Y was subjected to log transformation.  Hence, moderated regression 

effect size was 7.2 times larger when (correctly) estimated from nontransformed data. 
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_____________________________ 

Insert Figure 1 about here 

_____________________________ 

However, confidence intervals around ∆R2 can be derived via bootstrapping procedures 

regardless of how X1, X2, e, or Y are distributed.  Table 3 reports bootstrap estimates of the 2.5th 

percentile values of the moderated regression effect size ∆R2 taken from B = 1000 bootstrap 

samples of size N = 113 for the five situations where Y is positively skewed, i.e., those subject to 

log transformation using current methodological convention.  Interestingly, median effect sizes 

across 1000 bootstrap samples were between 2.6 and 534 times larger than ∆R2 effect sizes 

resulting from analyses conducted after Y was log transformed Table 2b.  This suggests that to 

be equally likely to be detected, moderator effect sizes when Y is skewed and log transformed 

must be 2.6 to 534 times as large as those observed under conditions when Y is not log 

transformed and ∆R2 is estimated from the median bootstrap ∆R2 value.  Put another way, other 

things being equal, the sample size needed to correctly reject Ho: ∆R2 = 0 would need to be 6.76 

to 285,156 times as large when Y is skewed and log transformed in these samples.  Investigators 

using OLS moderated regression and log transformed dependent variables would be much more 

likely to fail to detect true interaction effects (Type II error). 

___________________________ 

Insert Table 3 about here 

___________________________ 

Discussion 

 This study demonstrated a fundamental problem in detection of latent moderation effects 

when log transforms are used to “correct” positively skewed dependent variables.  Specifically, 
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increased probability of Type II error was demonstrated in both a Monte Carlo simulation 

generating 5000 samples from known population distributions and subsequent bootstrap analysis 

of individual simulated samples.  Results suggested severe decrements in statistical power 

required to test moderation regression effects, i.e., Ho: ∆R2 = 0, resulted from log 

transformations.  These decrements occurred when parametric assumptions were in fact met (i.e., 

the shaded rows of Tables 1a and 2a) as well as when parametric assumptions were not met.  

Graphically, log transformations change the Y distribution shape, effectively decreasing Y 

variance by reducing the degree to which extremely positive Y values deviate from the mean.  If 

these extreme Y values were created by an interaction between one or more positively skewed 

independent variables (e.g., when X1 and X2 are distributed as χ2), log transformations of Y 

effectively “disguise” the extreme values of Y that should result from the product of extreme X1, 

X2 values as less extreme values, effectively yielding a log Y variable exhibiting less variance 

than the original raw Y observations.  While Type I error is always possible (cf. Aguinis & 

Pierce, 1998), it is clear that log transformations of positively skewed dependent variables 

greatly enhances Type II error probability. 

Fortunately, results also indicated bootstrapping procedures provide a viable alternative 

to traditional parametric statistical procedures for detecting moderator effects regardless of how 

X1, X2, and e are distributed.  In fact, in situations where convention dictates Y should be 

subjected to log transformation, log transformations caused extremely severe decrements in 

statistical power for parametric OLS procedures relative to bootstrap procedures.  Data simulated 

here are commonly found in compensation research, where parametric procedures are commonly 

used after Y is routinely subjected to log transformation (e.g., Henderson & Frederickson, 1996; 

Sanders & Carpenter, 1998).   
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Of course log transformations could be justified on some theoretical basis.  The authors 

are unaware of any theoretical rationale put forth by compensation theory or any other area of 

applied psychological or management research to justify such a transformation in the presence of 

a multiplicative model.  Further, the authors have never seen any discussion of the theoretical 

underpinnings of latent models that result from such a transformation, such as Xlogββ 101010Y +=ˆ  

(SPSS, 1996).  As a result, any gains in statistical elegance and predictive power (i.e., for 

additive models) stemming from log transformations are not currently matched by gains in 

theoretical insight.  Null results for tests of moderation in studies employing log transformations 

are expected to frequently reflect Type II error when a true latent moderation process is present.  

In sum, when hypothesized models involve interaction effects, applied psychological and 

management research would benefit from routine application of bootstrap procedures.  While not 

replacing common parametric procedures, bootstrap applications are appropriate when 

parametric assumptions are not viable (e.g., when heteroscedasticity is present due to a positively 

skewed dependent variable).  Nonlinear monotonic transformations may achieve necessary 

statistical conditions for parametric inferences in OLS applications to additive models 

(Busemeyer & Jones, 1983; Winer, 1974).  Current results indicated nonlinear monotonic 

transformations also erode investigator's capacity to assess theory-based predictions of 

moderation effects (e.g., estimates of moderation effect ∆R2).  Importantly, bootstrapping 

provides an alternative method of assessing theory-based inferences of moderation effects from 

data that cannot be assessed with comparable statistical power by conventional procedures.
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Notes 
                                            
1 Note, if X is not normally distributed and Y is a linear function of X, Y will also likely not be 

normally distributed. 

2 Bergman, Scarpello, and Hills (1997) and Milkovich and Newman (1996) noted how pay 

ranges are generally a constant or increasing percentage of the range midpoint.  Hence, as pay 

range mid-point (and mean) increases, the variation in observed salaries around the mid-point 

increases. 

3 Of course, weighted least square (WLS) procedures would also resolve the heteroscedasticity 

problem.  However, it would do so by migrating what was a nonlinear transformation paired with 

OLS into the internal optimal weighting procedures characteristic of WLS. 

4 We thank an anonymous reviewer for bringing this to our attention. 

5 We thank an anonymous reviewer for this example. 

6 See Efron and Tibshirani (1993), chapter 14 (pp. 178-201) for a discussion of alternatives to the 

“simple” bootstrap.  Specifically, the bias-corrected and accelerated (BCa) and the approximate 

bootstrap confidence (ABC) interval methods are marginally more complex techniques that 

overcome most shortcomings associated with the simple bootstrap. 

7 The first author will provide these results on request. 

8 ∆R2 for the 2.5 and 97.5 percentile values are available from the first author on request. 

9 Again, see Efron and Tibshirani (1993), chapter 14 (pp. 178-201) for more elaborate bootstrap 

procedures exhibiting certain statistical elegancies that might yield more robust CI intervals. 


