Polymorphic MHC loci in an asexual fish, the amazon molly (Poecilia formosa; Poeciliidae)

HELMUT SCHAASCHL,* MICHAEL TOBLER,†‡¶ MARTIN PLATH,§ DUSTIN J. PENN,* and INGO SCHLUupp*
*Konrad Lorenz Institute for Ethology, Austrian Academy of Sciences, Savoenstrasse 1a, 1160 Vienna, Austria, †Department of Zoology, University of Oklahoma, 730 Van Vleet Oval Norman, OK 73019, USA, ‡Institute of Zoology, University of Zürich, Winterthurerstr. 190, CH-8057 Zürich, Switzerland, §Unit of Evolutionary Biology and Systematic Zoology, Institute of Biochemistry and Biology, University of Potsdam, Karl-Liebknecht Str. 24-25, 14476 Potsdam, Germany

Abstract

Genes of the major histocompatibility complex (MHC) encode molecules that control immune recognition and are highly polymorphic in most vertebrates. The remarkable polymorphisms at MHC loci may be maintained by selection from parasites, sexual selection, or both. If asexual species show equal (or higher) levels of polymorphisms at MHC loci as sexual ones, this would mean that sexual selection is not necessary to explain the high levels of diversity at MHC loci. In this study, we surveyed the MHC diversity of the asexual amazon molly (Poecilia formosa) and one of its sexual ancestors, the sailfin molly (P. latipinna), which lives in the same habitat. We found that the asexual molly has polymorphic MHC loci despite its clonal reproduction, yet not as polymorphic as the sexual species. Although the nucleotide diversity was similar between the asexual and sexual species, the sexual species exhibited a greater genotype diversity compared to the asexual one from the same habitats. Within-genome diversity was similar for MHC class I loci, but for class IIb, the sexual species had higher diversity compared to the asexual — despite the hybrid origins and higher levels of heterozygosity at microsatellite loci in the asexual species. The level of positive selection appears to be similar between the two species, which suggests that these polymorphisms are maintained by selection. Thus, our findings do not allow us to rule out the sexual selection hypothesis for the evolution of MHC diversity, and although the sexual fish has higher levels of MHC-diversity compared to the asexual species, this may be due to differences in demography, parasites, or other factors, rather than sexual selection.

Keywords: clonal, gynogenesis, MHC, Poecilia formosa

Received 10 June 2008; revision received 6 October 2008; accepted 11 October 2008

Introduction

The genes of the major histocompatibility complex (MHC) are highly polymorphic loci in most vertebrates, and it has been a considerable challenge to understand how such diversity can be maintained by natural selection (Apanius et al. 1997; Wegner et al. 2004; Van Oosterhout et al. 2006). MHC genes encode class I and class II molecules that control immune recognition of pathogens and parasites by binding self- and non-self peptides and presenting them to T-cells. Subsequently, T-cells discriminate between self and foreign by recognizing the specificity of the peptide-MHC-complex, triggering an appropriate immune response (Janeway et al. 2001). MHC class I and class II loci are usually closely linked and organized in a gene dense cluster; however, in teleost fishes, they are unlinked and distributed over two or more chromosomes (Sato et al. 2000; Stet et al. 2003) and can therefore recombine independently. Several lines of evidence indicate that MHC polymorphisms are maintained by some form of balancing selection, either from pathogens and parasites (Apanius et al. 1997; Lohm et al. 2002; Wegner et al. 2003; Prugnolle et al. 2005), disassortative mating preferences (Yamazaki et al. 1978), or both (Penn & Potts 1999; Penn 2002). We suggest that if the asexual species
show high levels of MHC polymorphisms, or at least comparable to their sexual congeners, then sexual selection is unnecessary to explain the unusual diversity of MHC genes. We examined this hypothesis in two species, an asexual fish and its sympatric congener.

The amazon molly (Poecilia formosa), a clonal, all-female, teleost (family Poeciliidae) originated between 40 000 and 100 000 years ago through a single natural hybridization event between the two closely related sexual species, P. latipinna (sailfin molly) and P. mexicana (Atlantic molly; Avise et al. 1991; Schartl et al. 1995a; Loewe & Lamatsch 2008). The amazon molly occurs along the eastern coast of northern Mexico into south and central Texas and overlaps in distribution with both P. mexicana and P. latipinna (Schlupp et al. 2002). Although inheritance is clonal, amazon females must mate with heterospecific males, either P. latipinna or P. mexicana, because they require sperm to trigger embryogenesis (gynogenesis; Schlupp 2005). Male genes may enter the amazon molly’s genome, but apparently this is rare (Schartl et al. 1995b, 1998; Lamatsch et al. 2004; Schlupp 2005).

Amazon molly populations have a lower genotypic diversity compared to their sexual relatives (Lampert et al. 2005; M. Plath et al., unpublished data). Recent population genetic studies using microsatellite analyses showed that two dominant clones are accompanied by a set of rare clones in each amazon molly population (Lampert et al. 2005; M. Plath et al., unpublished data). Although genotypic diversity in amazon mollies is low, individuals exhibit higher heterozygosity at most microsatellite loci than sexual sailfin mollies, which is likely because of the hybrid origin of asexuals (Tiedemann et al. 2005; M. Plath et al., unpublished data). Some microsatellite loci apparently encompass only alleles of one ancestral species, suggesting genome homogenization through mitotic gene conversion (Tiedemann et al. 2005; M. Plath et al., unpublished data). Because the amazon molly’s overall genotypic diversity is low, we expect within-population MHC diversity to be reduced compared to its sexual congeners as well. On the other hand, within-genome diversity might be high due to the hybrid origin. Virtually nothing is known about MHC diversity in this asexual fish, and to our knowledge, only one study has ever examined MHC variation in an asexual species (Radtkey et al. 1996). Our aim was to survey the MHC class I and class IIB diversity of the asexual amazon molly (P. formosa) and one of its sexual relatives, the sailfin molly (P. latipinna). This study is a first step towards determining whether pathogens drive MHC diversity in these species, and it is part of a larger project aimed to test the hypothesis that sexual reproduction functions to provide a ‘moving target’ against rapidly evolving pathogens and parasites (Red Queen hypothesis; Jansen 1978; Hamilton 1980; Bell 1982; Hamilton et al. 1990; Tobler & Schlupp 2008).

Materials and methods

Samples and DNA isolation

In our study, we included a total of 113 wild-caught amazon mollies (Poecilia formosa) and 45 wild-caught sailfin mollies (P. latipinna) from Texas (USA). The amazon molly sample encompassed individuals from two populations: south Texas (two sampling sites: Weslaco (n = 14) and Lincoln Park (n = 4)) and central Texas (two sampling sites: Martindale (n = 76) and County 101 (n = 19)). The sailfin molly individuals were obtained from the same two populations and sampling sites (except County 101) as the amazon mollies [south Texas: Weslaco (n = 14) and Lincoln Park (n = 5); central Texas: Martindale (n = 26)]. Genomic DNA was extracted from tissue samples with a DNA extraction kit DNeasy Tissue Kit (QIAGEN GmbH) according to the manufacturer’s protocol.

PCR amplification, primers, and cloning of MHC class I genes

The exon 2 (encoding the α-1 domain) of the MHC class I genes [alleles were named in this study as UA (teleost MHC class I genes) with serial numbers attached] was amplified using the published primer pair Tu1372/Tu1373 of the guppy (Poecilia reticulata; Sato et al. 2000). The guppy primer pair successfully amplified the MHC class I exon 2 in all molly samples. The 25 µl polymerase chain reaction (PCR) mixture contained 1× PCR buffer, 200 mM dNTPs mix, 1.5 mM MgCl₂, 15 pm/µL of each primer, 1–2 µL of genomic DNA sample, and 1 U Taq Polymerase (QIAGEN GmbH). The thermal cycling profile for the PCR consisted of 5 min preheating at 95 °C, followed by either 23 or 26 cycles (depending on the PCR yield) of 35 s at 94 °C, 35 s at 54 °C and 60 s at 72 °C with a final extension of 10 min. The PCR products were checked by electrophoresis on a 1.5% agarose gel and then immediately cloned into the PCR 2.1-TOPO plasmid (TOPO TA cloning kit, Invitrogen Ltd). Subsequently, the cloning reactions were transformed into Escherichia coli (TOP10) competent cells (Invitrogen Ltd). From each individual, between 10 and 15 positive (blue/white selection) clones were picked and grown overnight in 3 mL of LB-Medium (containing 50 µg/mL ampicillin). Plasmids were isolated by the QIAprep spin miniprep kit (QIAGEN GmbH) and checked for the correct inserts with EcoRI digestion or by running a second PCR with M13 sequencing primers before sequencing.

PCR amplification, primers, and cloning of MHC class IIB genes

We focused on the exon 2 that encode the PBR (β1-domain) of the MHC class IIB genes. We first tried to amplify the
exon 2 by using the published MHC class IIB exon 2 primer pair TU1292/TU1293 of the guppy (Sato et al. 2000), but this primer pair did not amplify the exon 2 in the first molly samples. Subsequently, we used the three-spined stickleback (Gasterosteus aculeatus) specific MHC class IIB forward primer GA11 (Sato et al. 2000), which binds in a rather conserved region of the exon 2 5′-region in teleosts, together with the guppy-specific reverse primer TU1293. With this primer combination, we amplified the exon 2 in seven out of 11 molly samples we tested. To increase the specificity and performance of the primers, we designed a new molly-specific reverse primer in accordance to a sequence alignment of MHC class IIB sequences of various bony fish species and of molly MHC class IIB sequences obtained previously with the guppy/stickleback primer combination. The GA11 forward primer and the newly designed reverse primer (PoeR1: 5′-TTGGTATCGATAACAGTGTG-3′) successfully amplified part of the exon 2 of the MHC class IIB genes in all samples. The PCR conditions as well as the cloning procedure were as described for the MHC class I analysis (see above).

Sequencing analyses and detecting positive selection

Sequences were determined using the CEQ DTCS quick start kit (Beckman Coulter Inc.), dye-labeled dideoxy-terminator cycle sequencing kit, and the CEQ8000 capillary DNA Sequencer (Beckman Coulter Inc.). Preliminary sequence processing and analysis was performed with BioEdit (Hall 1999). Single nucleotide substitutions between sequences were possible PCR/cloning artefacts and therefore were used only if found at the minimum in three clones from the same specimen or in clones of another sample. Thus, each MHC allele described in the present study was confirmed by a minimum of three sequenced clones. All nucleotide and amino acid sequences were aligned with the program Clustal_X (Thompson et al. 1997). Phylogenetic and molecular evolutionary analyses were conducted using MEGA version 3.1 (Kumar et al. 2004). The estimates for the nucleotide diversity π (Nei 1987) were calculated using DnaSP version 4.10.3 (Rozas et al. 2003). The selective pressure at the amino acid level was measured by the nonsynonymous/synonymous rate ratio (ω = dN/dS), whereby ω > 1 indicates positive selection (e.g. Yang & Bielawski 2000). We used the maximum-likelihood method (Yang et al. 2000) implemented in the program CODEML of the PAML 4.1 software package (Yang 2007) to test whether codon sites were affected by positive selection (Yang et al. 2005). The models considered in this study were M7 (beta), and M8 (beta and omega; for details, see Yang et al. 2000; Yang & Swanson 2002). While recombination can potentially generate false-positives in the detection of positive selection, these two models are much more robust against the occurrence of recombination than the other models implemented in CODEML (Anisimova et al. 2003). Under the model M7 (beta) the ω ratio varies according to the beta distribution (with parameters p and q) and does allow for positive selected sites (0 < ω < 1), and thus serves as the null model for comparison with model M8 (beta & omega). The models M7 and M8 can be compared in pairs using the likelihood-ratio test (LRT; Nielsen & Yang 1998). The LRT statistics calculate twice the log-likelihood difference compared with a chi-squared (χ^2) distribution with degrees of freedom equal to the difference in the number of parameters between the two compared models. To provide phylogenetic information required for the analysis (Yang 2007), the best tree for MHC sequences was identified by maximum likelihood under the one-ratio model (M0) in CODEML. Positively selected codons (ω > 1 with P > 95%) were identified through an empirical Bayes approach implemented in CODEML (Yang et al. 2005).

CE-SSCP analysis of MHC class I and class IIB genes

To screen and identify the allelic variants of the MHC genes in a larger number of samples, we used capillary electrophoresis single-strand conformation polymorphism (CE-SSCP). This method can be automated and is characterized by high throughput, high sensitivity, and good reproducibility (Binz et al. 2001; Bryja et al. 2005; Schaschl & Wegner 2006). We refer here to MHC sequence variants detected by CE-SSCP for simplicity as ‘alleles’, although we were unable to assign any sequence variants to a certain MHC locus. For all PCRs, the QIAGEN Multiplex PCR Kit with fluorescent-labeled primers (forward primer by 6′-FAM and reverse primer by HEX), was used to amplify the MHC genes in the molly samples. The thermal cycling profile for the PCRs consisted of initial heating at 95 °C for 15 min (hot-start polymerase activation), followed by 30 cycles of denaturation at 94 °C for 30 s, annealing at 56 °C for 35 s, extension at 72 °C for 90 s, and ending with a 10-min extension step at 72 °C. For the CE-SSCP analyses, the fluorescent-labeled PCR samples were prepared for electrophoresis by combining 1 μL PCR product with 14 μL loading mix [13.75 μL Hi-DI formamide, 0.25 μL GeneScan ROX 350 standard (Applied Biosystems)]. The mixture was heated for 3 min at 95 °C to separate the complementary DNA strands, chilled on ice for 4 min and analysed by capillary electrophoresis on an ABI PRISM 3130xl automated DNA Sequencer (Applied Biosystems). The CE-SSCP polymer consisted of 5% GeneScan polymer (Applied Biosystems), 10% glycerol, 1×TBE, and HPLC-water. The running buffer mixture contained 10% glycerol, 1×TBE and HPLC-water. The separation of the allelic variants was achieved by run conditions at 12 kV for 36 min and by a run temperature at 22 °C. The retention times of the allelic variants were identified relative to the ROX 350 standard. The GeneMapper software packages 4.05 from Applied Biosystems were used to process the obtained SSCP data.
Results

Sequence analyses of the MHC class I genes

We sequenced the exon 2 of the MHC class I genes from 29 amazon molly (Pecilia formosa) and 14 sailfin molly (P. latipinnia) individuals. The novel MHC class I exon 2 (alpha-1 domain) sequences obtained for this study were 221 bp and 215 bp in length (excluding primer sequences), respectively. Thus, there was an indel position (six nucleotides) in the MHC class I exon 2 sequences. The putative amino acid sequences of the exon 2 (alpha-1 domain) therefore comprised 73 and 71 amino acids, respectively (Fig. 1). At the same position, an indel position has been described in the guppy MHC class I sequences (Sato et al. 1995). In addition, the number of class I alleles in individuals varied from one to six in both species studied here. This suggests that the primer pair may amplify the exon 2 from one to six MHC class I loci per individual, if the number of loci varies between individuals. All nucleotide sequences of the MHC class I genes obtained in this study have been deposited in GenBank (P. formosa Accession nos EU790493–EU790516; P. latipinnia Accession nos EU790526–EU790548).

Nucleotide sequence variation among all pairwise comparisons of amazon molly and sailfin molly class I sequences, corrected for multiple substitutions, ranged from 0.05 to 64.0% with a mean of 29.6% ± 2.5% (± standard deviation) and from 0.9 to 62.4% with a mean of 28.1% ± 2.6%, respectively. Amino acid replacements among all pairwise comparisons in the amazon molly sequences ranged from 1 to 41 (mean 26.6 ± 2.4) and in the sailfin molly sequences from 4 to 40 (mean 26.2 ± 2.5). Nucleotide diversity (π) is given in Table 1 for both mollie species. One amazon molly
Table 1 Comparison of the number of obtained MHC sequences and nucleotide diversity calculated for the MHC class I exon 2 (α1-domain) and MHC class IIB exon 2 (β1-domain) sequences in the two Poecilia species investigated.

<table>
<thead>
<tr>
<th></th>
<th>P. formosa</th>
<th>P. latipinna</th>
</tr>
</thead>
<tbody>
<tr>
<td>MHC class I</td>
<td></td>
<td></td>
</tr>
<tr>
<td>No. of sequenced individuals</td>
<td>29</td>
<td>14</td>
</tr>
<tr>
<td>No. of sequence variants</td>
<td>24</td>
<td>23</td>
</tr>
<tr>
<td>Nucleotide diversity (π)</td>
<td>0.229</td>
<td>0.220</td>
</tr>
<tr>
<td>MHC class IIB</td>
<td></td>
<td></td>
</tr>
<tr>
<td>No. of sequenced individuals</td>
<td>29</td>
<td>14</td>
</tr>
<tr>
<td>No. of sequence variants</td>
<td>9</td>
<td>12</td>
</tr>
<tr>
<td>Nucleotide diversity (π)</td>
<td>0.214</td>
<td>0.206</td>
</tr>
</tbody>
</table>

Table 2 Log-likelihood values and parameter estimates for the Poecilia MHC class I and MHC class IIB sequences.

<table>
<thead>
<tr>
<th>Model</th>
<th>ln L</th>
<th>Estimates of parameters</th>
<th>Positively selected sites</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>P. formosa</td>
<td>P. latipinna</td>
<td>P. formosa</td>
</tr>
<tr>
<td>M7 (beta)</td>
<td>-2044.14</td>
<td>-1732.82</td>
<td>p = 0.28680</td>
</tr>
<tr>
<td>M8 (beta & ω)</td>
<td>-2023.98</td>
<td>-1755.84</td>
<td>p = 0.28680</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>q = 0.16085</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>p = 0.66396</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(p1 = 0.33604)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>p = 0.38136</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>q = 0.31118</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>ω = 2.7</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Not allowed</td>
</tr>
<tr>
<td>M7 (beta)</td>
<td>-880.19</td>
<td>-880.19</td>
<td>p = 0.22129</td>
</tr>
<tr>
<td>M8 (beta & ω)</td>
<td>-868.60</td>
<td>-868.60</td>
<td>p = 0.22129</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>q = 0.29375</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>p = 0.82550</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(p1 = 0.17450)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>p = 0.34611</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>q = 0.60563</td>
</tr>
</tbody>
</table>

ln L is the log-likelihood value, ω is the selection parameter and p is the proportion of sites that fall into ω site class. Sites inferred to be under positive selection are given at the 95% (*) and 99% (**) confidence interval level.

MHC class I sequence (Pofo-UA*22) was probably generated by a point mutation, since the amazon molly class I sequence Pofo-UA*22 and the sailfin molly sequence Pola-UA*07 differ only at one nucleotide position by a nonsynonymous substitution. This single nucleotide difference between the two sequences may not be the result of a sequencing artefact because we obtained each sequence separately in each studied species and by sequencing the forward and the reverse strand.

We tested for positive selection using maximum-likelihood analysis (Yang et al. 2000). The LRT, comparing the two models M7 and M8, demonstrated that M8 [the model that accounts for sites under positive selection (ω > 1)] showed a significantly better fit for both molly species (P < 0.001) than the model M7 [that does not allow for positive selection (0 < ω < 1)]. In both species, the ω ratio is more than 1 (Table 2), indicating positive selection in the MHC class I sequences. The estimates from M8 suggested that about 33% of the sites were under strong positive selection in the amazon molly class I sequences (ω = 2.7) and 35% in the sailfin molly sequences (ω = 3.1; Table 2). Bayes identification of sites under positive selection is listed in Table 2.

© 2008 The Authors
Journal compilation © 2008 Blackwell Publishing Ltd
Sequence analyses of the MHC class IIB genes

The same individuals were sequenced for MHC class IIB as for MHC class I. The molly MHC class IIB exon 2 sequences we obtained were 216 bp in length (including primer sequences). All sequences have been deposited in GenBank (P. formosa Accession nos EU790517–EU790525; P. latipinna Accession nos EU790549–EU790560) and the MHC class IIB molecules (Fig. 2). Between one and four class IIB sequences were found per individual in both species, suggesting that the primer pair we used may amplify from one to four loci in these species. We found nine distinct MHC class IIB sequences in the asexual amazon molly and 12 class IIB sequences in the sailfin molly (Fig. 3). Nucleotide sequence variation among all pairwise comparisons of amazon molly and sailfin class IIB sequences, corrected for multiple substitutions, ranged from 12.1 to 34.7% (mean 25.5% ± 2.8%) and from 6.1 to 41.4% (mean 25.3% ± 2.8%), respectively. Amino acid replacement among all pairwise comparison ranged from 9 to 23 (mean 17.4 ± 2.4) in the amazon molly class IIB sequences and from 6 to 24 (mean 17.3 ± 2.3) in the sailfin molly. The nucleotide diversity (θ) of the MHC class IIB sequences for both species are given in Table 1. Similar to the finding for the MHC class I sequences, the LRT statistics demonstrated also for the MHC class IIB sequences that M8 fitted the data from both molly species significantly (P < 0.001) better than the model M7. In both species, the θ ratio was more than 1 (Table 2), indicating positive selection also in the MHC class IIB sequences. The estimates from M8 suggested that about 17% of the sites were under strong positive selection in the amazon molly class IIB sequences (θ = 3.3) and 20% in the sailfin molly class IIB sequences (θ = 3.6) (Table 2). Sites in the MHC class IIB sequences identified as being under positive selection in the Bayesian analysis are listed in Table 2.

CE-SSCP analysis of MHC class I and class IIB diversity

We carried out CE-SSCP analysis to investigate the MHC diversity in several populations of these two species. The CE-SSCP analysis revealed that the MHC class I diversity was reduced in the asexual amazon molly populations compared to the sexual sailfin molly. We obtained only 27 MHC class I sequence variants (alleles) in the asexual species whereas we found 40 in the sexual species (Fig. 3). Consequently, genotypic diversity is significantly reduced in asexual mollys as we found 34 distinct MHC class I genotypes in 40 sailfin molly, but only 20 distinct genotypes in 113 amazon mollys (x² = 58.593, P < 0.001; Table S1, Supporting Information). Similarly to the sequence analysis, we also obtained between one and six alleles per individual in the CE-SSCP analysis. The mean within-genome MHC class I diversity did not differ significantly between amazon mollys (mean ± SD: 3.57 ± 1.75) and sailfin mollys (3.82 ± 1.34; independent sample t-test corrected for unequal variances: t(69.01) = 0.966, P = 0.337) alleles per individual.

As in the CE-SSCP analysis of the MHC class I diversity, we obtained fewer sequence variants from the MHC class IIB genes in the asexual amazon molly as compared to the sexual molly species. The CE-SSCP analysis revealed 13 MHC class IIB alleles in the Amazon molly samples and 34 in the sexual sailfin molly (Fig. 3), and genotypic diversity was significantly lower in asexuels (14 distinct genotypes in 112 samples) than sexuals (25 genotypes in 44 samples; x² = 33.091, P < 0.001; Table S2, Supporting Information). In the amazon molly, the number of sequence variants obtained by CE-SSCP analysis varied from one to three per individual. In most individuals, however, we detected only two MHC class IIB sequences with a mean of 1.59 (± 0.53) per individual. In the sailfin molly, the MHC class IIB sequences varied from one to four with a mean of 2.23 (± 0.89) per individual. Hence, asexual mollys had a significantly lower within-genome diversity in MHC IIB alleles.
compared to sexuals (independent sample t-test corrected for unequal variances: $t_{50.50} = 4.475, P < 0.001$).

Some of the MHC sequences found in the amazon molly were not detected in the sailfin molly samples. These MHC sequences may either (i) represent Sailfin-molly-derived sequences that have not been detected in our Sailfin molly samples, (ii) have been derived from the second sexual ancestor (*P. mexicana*), (iii) be shared sequences between the two sexual species, or (iv) represent novel MHC class I sequences generated by point mutations after the hybridization event. Notably, the MHC alleles shared between the asexual and sexual molly species occurred at very different frequencies in each species (Fig. 3).

Discussion

We examined the diversity at class I and class IIB MHC loci in an asexual fish and its sexual congener and found that the asexual amazon mollies were polymorphic, but not nearly as diverse as the sexual sailfin mollies. Therefore, our results do not allow us to rule out the sexual selection hypothesis for MHC diversity in sailfin mollies. We first sequenced the exon 2 of both the MHC class I and class IIB genes in both species. The exons encode part of the peptide (antigen) binding region in the two types of MHC molecules, which is likely the most polymorphic region in the MHC sequences. The number of sequences in the molly samples
ranged from one to six sequences per individual for MHC class I, and one to four sequences for MHC class IIB genes. If the number of MHC loci varies among individuals (copy number variation), then the number of class I loci could range from one to six and the number of class IIB loci from one to four. Alternatively, the number of loci may be fixed (e.g. three MHC class I and two class IIB loci), and only the level of heterozygosity per locus varies. Similar results have been described in other studies where an MHC primer pair simultaneously amplified sequences from multiple MHC genes (Bonneau et al. 2004; Westerdahl et al. 2004; Schaschil & Wegner 2006; Jäger et al. 2007). Similar to the MHC class I sequences of another poeciliid (the guppy, Poecilia reticulata), a six-nucleotide indel position occurs in the molly MHC class I sequences (Sato et al. 1995). The indel position is probably located in the loop region of the MHC class I molecules, and it has been argued that these indels may reflect permissibility of loop-length variation without functional consequences (Sato et al. 1995). This possibility could be tested using crystallography and functional studies of fish MHC class I molecules.

MHC diversity in asexual and sexual mollies

The nucleotide diversity and amino replacements in the MHC class I and class IIB sequences were very similar in the asexual and sexual species; however, the CE-SSCP analysis, which is based on a larger samples size, indicated that the population-wide MHC diversity (i.e. number of MHC class I and class IIB alleles present in the populations) is reduced in the asexual amazon molly compared to its sexual ancestor. The saflin molly had about 1.5 times more alleles from the MHC class I genes and about 2.6 times more alleles from the MHC class IIB genes compared to the amazon molly. Similarly, a lower diversity in MHC class I genes compared to closely related sexual species was found in a parthenogenetic vs. a sexual gecko (Hemidactylus and Lepidosactylus, respectively; Radtkey et al. 1996). Furthermore, in mangrove killifish (Risulus marmeratus) — an obligatorily selfing, synchronous hermaphroditic fish species — up to 44% of the fish were heterozygous at the MHC class I loci as compared to near homozygosity at non-MHC loci (Sato et al. 2002).

Using microsatellite markers, genotypic diversity within asexual populations has been shown to be much lower as compared to the sexual populations, although the allelic richness does not differ significantly between sexuals and asexuals (Lampert et al. 2005; M. Plath et al., unpublished data). Similarly, we found that the asexual amazon mollies exhibit a smaller genotypic diversity at MHC class I and IIB loci compared to sexual saflin mollies in the same populations. The reduction of genotypic diversity is likely due to the lack of recombination in asexually reproducing organisms. In the central Texas population, where amazon mollies were introduced in the 1950s, one MHC class I genotype occurred at a frequency of 49%. This eminently low MHC diversity may reflect a less diverse clonal population due to a bottleneck effect after introduction (Turner 1982). In the south Texas population, no dominant MHC genotype has been found in this study, but sample sizes were not sufficient to accurately estimate the genotype diversity in this population.

Due to their hybrid origin, amazon mollies are expected to exhibit high within-genome diversity, and indeed previous studies report that they exhibiting a higher degree of heterozygosity compared to sexual mollies (Lampert et al. 2005; Tiedemann et al. 2005; M. Plath et al., unpublished data). Despite the hybrid origin, within-genome diversity (measured as the number of alleles per individual) did not differ among asexual and sexual species at MHC class I loci, and was even significantly lower in asexuals at MHC IIB loci.

Evolution of MHC diversity in asexual mollies

Unlike other asexual vertebrates, which originated as a result of multiple hybridization events, amazon mollies appear to have a single origin and — being ameiotic — the current clonal diversity is thought to be resulting from mutations rather than from multiple hybridization events (Turner et al. 1990; Lampert et al. 2005). In sexual vertebrates, several studies suggested that point mutations and extraordinarily high rates of meiotic recombination coupled with strong positive selection can rapidly generate and maintain new MHC alleles in populations (e.g. Richman et al. 2003; Reusch et al. 2004; Consuegra et al. 2005; Schaschil et al. 2006). In an asexual species lacking meiotic recombination, however, only point mutations can generate novel MHC alleles. For example, the amazon molly MHC class I sequence Pofo-UA*22 differs at one nonsynonymous position from the saflin molly class I sequences Pola-UA*07 and could therefore represent such a novel allele. However, we cannot exclude the possibility that this sequence is a saflin molly sequence that has not yet been sampled or is a sequence derived from its second sexual ancestor, the Atlantic molly (P. mexicana). In addition, due to its sperm dependence, the inclusion of paternal genes may elevate the individual MHC diversity in the amazon molly. Inclusion of paternal genes has been documented and leads to stable triploid lineages (Lampert et al. 2005) and lineages containing micro-chromosomes (Schartl et al. 1995b).
most frequent alleles in amazon mollies, have probably been derived from the sailfin molly only. This finding is in agreement with a recent microsatellite study in amazon mollies, where at some loci, only alleles from one ancestral species are present in the asexual hybrid (Tiedemann et al. 2005; M. Plath et al., unpublished data). This result was interpreted as genome homogenization through mitotic gene conversion (Tiedemann et al. 2005).

Interestingly, the two dominant MHC class IIB alleles (a113 and a114) as well as some MHC class I alleles (e.g. a131, a134, and a149) were not only found in amazon mollies, but also in the sexual sailfin molly; however, these alleles occurred at vastly different frequencies in the two species (Fig. 3). This suggests that either these alleles have been in high frequency during the time of hybridization and were subsequently maintained in this frequency in the asexual amazon mollies populations, or these alleles confer a recent advantage in immune defence for the asexual molly species and increased their frequency over time. Since asexual mollies must occur in sympatry with their sexual relatives and are exposed to the same environmental conditions and parasite fauna (Tobler et al. 2005), it is unclear how specific alleles could confer an advantage for one, but not the other molly species (although some evidence indicates that the genetic background influence how MHC alleles affect a hosts’ resistance to pathogens).

We examined evidence for positive selection for both MHC class I and class IIB in both molly species, and found that the ω-ratios were very similar between the two species for both MHC class I and class IIB sequences (Table 2). This finding suggests a similar level of positive selection acting on the MHC genes and in both species. Bayesian analysis identified largely consistent individual positively selected sites in MHC class I and class IIB across both species, which indicates that probably both species are exposed to the same selective pressure. Indeed, a previous study has shown that both species harbour similar levels of parasites (Tobler et al. 2005).

It is surprising that we found such diversity at MHC loci in the asexual amazons, as they are a ‘clonal’ species, and future studies on the evolution of MHC diversity could potentially benefit by more work on such asexual species (for focusing on pathogen-mediated selection). It is not surprising that the amazon mollies have lower levels of diversity than the sexual molly, but this difference may be due to selection from pathogens, genetic drift, or other factors, and not necessarily mate choice. Other studies that have examined parasitism in amazon and sexual mollies found, contrary to the expectations of the Red Queen hypothesis, that amazon mollies do not suffer from higher parasite loads as compared to their sexual relatives (Tobler & Schlupp 2005; Tobler et al. 2005; M. Tobler et al., unpublished data). Our findings therefore suggest that asexual species may not have more parasites despite having significantly lower within-genome diversity at MHC class IIB loci. Clearly, these findings need to be addressed in future studies.

Acknowledgements

We thank Gopi Krishna for cloning and sequencing support. Financial support came from the DFG (SCHL 344/13-1), the University of Oklahoma (VP for Research), as well as from the Swiss Academy of Sciences, the Barth Fonds of the ETH Zürich, the Basler Foundation for Biological Research, the Janggen-Poehn-Foundation, the Roche Research Foundation, and the Wolfermann-Nägeli-Foundation (to M. T.). Finally, we would like to thank the subject editor and the anonymous reviewers whose comments improved the quality of the final paper.

References

Loewe L, Lamatsch DK (2008) Quantifying the threat of extinction from Muller’s ratchet in the diploid amazon molly (*Poecilia formosa*). *RMC Evolutionary Biology*, 8, 88.

H. Schaschl’s research focuses on evolutionary genetics, population genetics, genomics, and the on genetic interaction between hosts and parasites. M. Tobler studies how ecological and evolutionary processes lead to genetic and phenotypic variation within and among populations, adaptation along complex selective environments, and speciation. M. Plath is interested in evolutionary processes (behavioural and evolutionary ecology, ecological genetics) in both aquatic and terrestrial animals. D. Penn has broad interests in behavioural biology and evolutionary biology and studies the evolutionary functions and proximate mechanisms underlying behaviour. I. Schlupp is trying to understand the maintenance of sex using the amazon molly as model system.

Supporting Information

Additional Supporting Information may be found in the online version of this article:

Table S1 Allelic composition of different MHC class I genotypes identified in asexual *Poecilia formosa* and sexual *P. latipinna*. The number of alleles as well as the number of individuals of the respective genotype are also given.

Table S2 Allelic composition of different MHC class IIB genotypes identified in asexual *Poecilia formosa* and sexual *P. latipinna*. The number of alleles as well as the number of individuals of the respective genotype are also given.

Please note: Wiley-Blackwell are not responsible for the content or functionality of any supporting materials supplied by the authors. Any queries (other than missing material) should be directed to the corresponding author for the article.