AN UNUSUAL FORAGING STRATEGY IN DUCKS
(aves: anatidae)

KLAUDIA WITTE1,2 AND INGO SCHLUPP2
1Lehrstuhl für Verhaltensforschung, Universität Bielefeld, 33501 Bielefeld, Germany
2Section of Integrative Biology C0930, University of Texas at Austin, Austin 78712

ABSTRACT.—Ducks are normally not recognized as predators of fishes. Here we report of a group of ducks from Texas that exploit a common escape behavior by fishes and feed on these fishes.

Dabbling ducks and some other duck species are usually omnivorous and feed mostly on the water surface. Some species graze on land as well. Their diet consists mainly of algae, little pieces of plants, seeds, insect larvae, and crustaceans, which remained between the little teeth and the rough tongue in the bill. They gather floating food with the bill at the water surface by swimming, dabbling continuously or forage by upending. This is a common feeding behavior for dabbling ducks like Mallards (Anas platyrhynchos), Pekin Ducks and their hybrids. It is also typical for the Muscovy Duck (Cairina moschata) and for the Wood Duck (Aix sponsa). The Muscovy Duck sometimes feeds on small fishes, reptiles, millipedes and also termites (Johnsgard 1978). Wood Ducks also eat different kinds of nuts. They tip up and gather food from water about as deep as 32 cm, but they only very rarely dive for food (Johnsgard 1975).

In July and August 1999 we performed a field experiment in a fish species, the sailfin molly (Poecilia latipinna) near the bank of the Comal River in the Landa Park (New Braunfels, Texas). During the experiments we observed an unusual feeding behavior in ducks of different species and of different ages. These ducks were a male and a female Mallard, a hybrid between the Mallard and the Pekin Duck, a Wood Duck duckling about four weeks old, and a pair of Muscovy Ducks. These individuals were repeatedly observed near our experimental set up between 20 July and 14 August 1999. The ducks were fed daily by park visitors. The Comal River at our field-site is clear and slow flowing with dense vegetation and some plant-free areas. The river was about 60 cm to 150 cm deep near the bank. The most common fish species in this part of the river is the largespring gambusia (Gambusia geiseri) a live-bearing fish (Poeciliidae), with a standard body length of up to five cm. Another live-bearer, the sailfin molly is also very common in this area. This population was probably introduced from Louisiana in the 1920’s (Brown 1953).

1E-mail: Klaudia.witte@biologie.uni-bielefeld.de

We observed the ducks chasing and catching largespring gambusia and small sailfin mollies up to a body length of about five cm. *Gambusia* and sailfin mollies often swim near the water surface. A typical escaping behavior for the poeciliids from a predatory fish is to jump out of the water and fall back into the water a short distance away from the starting point. It appeared that the ducks exploited this escape behavior of the fish and learned to catch these fleeing fish. The ducks sometimes actively forced the fish to show this escaping behavior by swimming fast through groups of fish. The fish tried to escape and jumped out of the water. The ducks snapped the fish in the air with the bill and ate them. We could not quantify this behavior, but concluded that the ducks were quite successful with this unusual feeding behavior. All ducks in this group including a Wood Duck duckling showed this fish chasing and fish catching behavior. This behavior was not only present in 1999, but has since been noticed again (I.S. pers. obs.). We have not seen this behavior in ducks in other parts of Landa Park or other places where at least one of the duck species, mosquito fish or sailfin mollies and their enemies which force the fish to jump out of the water were common. Although our observation is anecdotal, we think it is relevant to the understanding of learning new and unusual foraging strategies in ducks.

ACKNOWLEDGMENTS

We thank the Parks and Recreation Department of the Landa Park, New Braunfels, Texas, for access to the Park. K. W. is supported by the DFG (Wi 1531/2) and I. S. is supported by DFG (SCHL 344/10–1).

LITERATURE CITED

