REGRET ANALYSIS AND BOUNDING

Prof. Miguel Bagajewicz

CHE 4273
Motivating Example

- Traditional way
 Maximize Average… select A

- Optimistic decision maker
 MaxiMax … select C

- Pessimistic decision maker
 MaxiMmin … select D
Motivating Example

- **Calculate regret:**
 - find maximum regret

- **A** … regret = 8 @ low market
- **C** … regret = 9 @ low market
- **D** … regret = 10 @ high market
- **B** … regret = 7 @ medium market

- **MINIMAX ⇒ B**

- In general, gives *conservative* decision
 but not pessimistic.
Two-Stage Stochastic Programming Using Regret Theory

NPV

<table>
<thead>
<tr>
<th></th>
<th>s1</th>
<th>s2</th>
<th>s3</th>
<th>s4</th>
<th>s5</th>
<th>ENPV</th>
<th>Max</th>
<th>Min</th>
</tr>
</thead>
<tbody>
<tr>
<td>d1</td>
<td>19.01</td>
<td>10.38</td>
<td>10.57</td>
<td>15.48</td>
<td>10.66</td>
<td>13.22</td>
<td>19.01</td>
<td>10.38</td>
</tr>
<tr>
<td>d2</td>
<td>11.15</td>
<td>14.47</td>
<td>8.87</td>
<td>20.54</td>
<td>10.58</td>
<td>13.12</td>
<td>20.54</td>
<td>8.87</td>
</tr>
<tr>
<td>d3</td>
<td>12.75</td>
<td>7.81</td>
<td>16.02</td>
<td>22.25</td>
<td>9.16</td>
<td>13.60</td>
<td>22.25</td>
<td>7.81</td>
</tr>
<tr>
<td>d4</td>
<td>5.41</td>
<td>9.91</td>
<td>12.63</td>
<td>32.02</td>
<td>8.08</td>
<td>13.61</td>
<td>32.02</td>
<td>5.41</td>
</tr>
<tr>
<td>d5</td>
<td>15.09</td>
<td>7.40</td>
<td>8.81</td>
<td>12.48</td>
<td>15.05</td>
<td>11.77</td>
<td>15.09</td>
<td>7.40</td>
</tr>
<tr>
<td>Max</td>
<td>19.01</td>
<td>14.47</td>
<td>16.02</td>
<td>32.02</td>
<td>15.05</td>
<td>13.61</td>
<td>32.02</td>
<td>10.38</td>
</tr>
</tbody>
</table>

Regret

<table>
<thead>
<tr>
<th></th>
<th>s1</th>
<th>s2</th>
<th>s3</th>
<th>s4</th>
<th>s5</th>
<th>Max</th>
<th>Min</th>
</tr>
</thead>
<tbody>
<tr>
<td>d1</td>
<td>0.00</td>
<td>4.09</td>
<td>5.45</td>
<td>16.54</td>
<td>4.39</td>
<td>16.54</td>
<td></td>
</tr>
<tr>
<td>d2</td>
<td>7.86</td>
<td>0.00</td>
<td>7.15</td>
<td>11.48</td>
<td>4.47</td>
<td>11.48</td>
<td></td>
</tr>
<tr>
<td>d3</td>
<td>6.26</td>
<td>6.66</td>
<td>0.00</td>
<td>9.77</td>
<td>5.89</td>
<td>9.77</td>
<td></td>
</tr>
<tr>
<td>d4</td>
<td>13.60</td>
<td>4.56</td>
<td>3.39</td>
<td>0.00</td>
<td>6.97</td>
<td>13.60</td>
<td></td>
</tr>
<tr>
<td>d5</td>
<td>3.92</td>
<td>7.07</td>
<td>7.21</td>
<td>19.54</td>
<td>0.00</td>
<td>19.54</td>
<td></td>
</tr>
<tr>
<td>Min</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>9.77</td>
<td></td>
</tr>
</tbody>
</table>
SAMPLING ALGORITHM

This generates several solutions
This is very useful because it allows nice decomposition,
That is, there is no need to solve the full stochastic problem
Example: Gas Commercialization in Asia
UPSIDE POTENTIAL

Point measure for the upside

![Graph showing the relationship between profit and risk with points for E(Profit) and VaR calculations.]
Comparison measure

\[\text{Risk}(x_1, \text{NPV}) \]
\[\text{Risk}(x_2, \text{NPV}) \]

\[\text{O}_\text{Area} \]
\[\text{R}_\text{Area} \]

\[\text{ENPV}_1 \quad \text{ENPV}_2 \]
Utility Functions

Money does not always have the same value for a company

- A Risk Averse Decision Maker values more low profits than large ones

- A Risk Taker values more high profits
Use Utility Value instead of real profit for evaluation

Effect on Risk Curves

[Graph showing Risk Averse Utility and Risk Taker's Utility]
CONCLUSIONS

- Regret Analysis can help in identifying good solutions (It can also fail)
- The sampling Algorithm is an important tool to identify upper bounds and good solutions.
- The upper potential is important to be considered.

References