OUTLINE OF CHAPTER 3

Conservation of Energy

Recall

\[\frac{\theta(t + \Delta t) - \theta(t)}{\Delta t} = \left(\text{Rate at which } \theta \text{ enters the system} \right) \]
\[- \left(\text{Rate at which } \theta \text{ leaves the system} \right) \]
\[+ \left(\text{Rate at which } \theta \text{ is generated} \right) \]

\[\Theta = \text{Energy(not specific energy)} \]

\[\theta = U + M \left(\frac{v^2}{2} + \psi \right) \]

\[U \text{ is the total internal energy,} \]
\[\frac{v^2}{2} \text{ is the kinetic energy per unit mass} \]
\[\psi \text{ is the potential energy per unit mass} \]

THUS

\[\frac{d}{dt} \left[U + M \left(\frac{v^2}{2} + \psi \right) \right] = \left(\text{Rate at which energy enters the system} \right) \]
\[- \left(\text{Rate at which energy leaves the system} \right) \]

(one phase, one component \(\rightarrow \) no generation)
Mechanisms for Energy to Enter/Leave

With ingoing/outgoing fluid:

\[\sum_{k=1}^{K} \dot{M}_k \left(\dot{U} + \frac{v^2}{2} + \psi \right)_k \]

Note: Specific (per unit mass) internal energy is used.

Heat Transfer (from various sources)

\[\dot{Q} = \sum \dot{Q}_j \]

\(\dot{Q} > 0 \) if heat is added TO the system

Work (electrical)

\[\dot{W}_s^F = \pm EI \]

\(\dot{W}_s > 0 \) if work is added TO the system. Included in the shaft work term for convenience
Work of Fluid against pressure (open systems only)

As fluid moves, it does work against the fluid that is ahead of it.

![Diagram showing fluid pressure and movement](image)

\[\text{Work} = F \, dL. \quad \text{But} \quad F = PA, \quad \text{and} \quad AdL = dV \rightarrow \]

\[\text{Work} = P \, dV = P\hat{V} \Delta M \]

\[
\begin{align*}
\left(\text{Work done by surrounding fluid in} \right) & \left(\text{pushing fluid element of mass } (M)_1 \right) = P_1 \hat{V}_1 \Delta M_1 \\
\left(\text{Work done on surrounding fluid} \right) \left(\text{by movement of fluid element of mass } (\Delta M)_2 \text{ out of the valve (since this fluid element is pushing the surrounding fluid)} \right) & = -P_2 \hat{V}_2 \Delta M_2 \\
\left(\text{Net work done on the system due to movement of fluid} \right) & = P_1 \hat{V}_1 \Delta M_1 - P_2 \hat{V}_2 \Delta M_2
\end{align*}
\]

THUS WE WRITE

\[
\left(\text{Net rate at which work is done on} \right) \left(\text{the system due to pressure forces} \right) \left(\text{acting on fluids moving into and out of the system} \right) = \sum_{k=1}^{K} \dot{M}_k (P\hat{V})_k
\]
Work (Shaft)

\[\dot{W} = F \frac{dL}{dt} \]

\(\dot{W} > 0 \) if work is added to the system.

In the case the system is behaving reversibly, then \(F = PA \), where \(P \) is the pressure of the system, which is assumed uniform over \(A \). Then

\[\dot{W} = -P \frac{dV}{dt} \]

The negative value is added because \(\dot{W} > 0 \) if \(\frac{dV}{dt} < 0 \)

Energy Conservation (First Law of Thermodynamics)

\[\frac{d}{dt} \left[U + M \left(\frac{v^2}{2} + \psi \right) \right] = \sum_{k=1}^{K} \dot{M}_k \left(\hat{U} + \frac{v^2}{2} + \psi \right)_k + \dot{Q} \]

\[+ \dot{W}_s - P \frac{dV}{dt} + \sum_{k=1}^{K} \dot{M}_k (P \hat{V})_k \]

Rate of change of Total Energy (Internal + External) of the system.

Energy added/subtracted associated to mass entering /leaving the system

Heat added

Shaft work

Expansion Work

Work done by fluid entering/leaving the system
Example: Turbine

\[
\dot{M}_1 = \dot{M}_2 \\
\dot{U}_1 = \dot{U}_2 \\
\psi_1 = \psi_2 \\
v_1 = 0 \\
\dot{M}_2 v_2^2 \text{ negligible}
\]

Steady state

\[
\frac{d}{dt} \left\{ U + M \left(\frac{v^2}{2} + \psi \right) \right\} = \sum_{k=1}^{K} \dot{M}_k \left(\dot{U} + \frac{v^2}{2} + \psi \right)_k + \dot{Q} \\
+ \dot{W}_s - P \frac{dV}{dt} + \sum_{k=1}^{K} \dot{M}_k (P \dot{V})_k
\]

Adiabatic

Turbine walls do not move (Volume remains constant)

Thus

\[
(-\dot{W}_s) = \dot{M}_1 P_1 \dot{V}_1 - \dot{M}_2 P_2 \dot{V}_2 = \dot{M}_1 \dot{V}_1 (P_1 - P_2)
\]
Work of a turbine/pump (no density changes in fluid) = Volumetric flowrate × Pressure differential

ENTHALPY

\[H = U + PV \]

\[
\frac{d}{dt} \left[U + M \left(\frac{v^2}{2} + \psi \right) \right] = \sum_{k=1}^{K} \dot{M}_k \left(\dot{H} + \frac{v^2}{2} + \psi \right)_k + \dot{Q} \\
+ \dot{W}_s - P \frac{dV}{dt} + \sum_{k=1}^{K} \dot{M}_k (P \dot{V})_k
\]

where \(\dot{W} = \dot{W}_s - P (dV/dt) \).

Molar Basis

\[\dot{M}_k \dot{H}_k = \dot{N}_k H_k \]

where \(H \) is the enthalpy per mole or molar enthalpy

\[H = U - PV \]

\[
\frac{d}{dt} \left[U + Nm \left(\frac{v^2}{2} + \psi \right) \right] = \sum_{k=1}^{K} \dot{N}_k \left[H + m \left(\frac{v^2}{2} + \psi \right) \right)_k + \dot{Q} + \dot{W}
\]

\(m \): Mol. Weight
Commonly used forms:

\[\frac{dU}{dt} = \sum_{k=1}^{K} (\dot{M} \hat{H})_k + \dot{Q} + \dot{W} \quad \text{(mass basis)} \]

\[\frac{dU}{dt} = \sum_{k=1}^{K} (\dot{N} \mathcal{H})_k + \dot{Q} + \dot{W} \quad \text{(molar basis)} \]

DIFFERENTIAL FORMS

General equation

\[\frac{d}{dt} \left[U + M \left(\frac{v^2}{2} + \psi \right) \right] = \sum_{k=1}^{K} \dot{M}_k \left(\hat{H} + \frac{v^2}{2} + \psi \right)_k + \dot{Q} + \dot{W} \] \((a) \)

Special cases:

(i) Closed system

\[\dot{M}_k = 0, \quad \frac{dM}{dt} = 0 \]

so

\[\frac{dU}{dt} + M \frac{d}{dt} \left(\frac{v^2}{2} + \psi \right) = \dot{Q} + \dot{W} \] \((b) \)

(ii) Adiabatic process

in Eqs. a, b, and d

\[\dot{Q} = 0 \] \((c) \)

(iii) Open and steady-state system

\[\frac{dM}{dt} = 0, \quad \frac{dV}{dt} = 0, \quad \frac{d}{dt} \left[U + M \left(\frac{v^2}{2} + \psi \right) \right] = 0 \]

so

\[0 = \sum_{k=1}^{K} \dot{M}_k \left(\hat{H} + \frac{v^2}{2} + \psi \right)_k + \dot{Q} + \dot{W}, \] \((d) \)

(iv) Uniform system

In Eqs. a and b

\[U = M \hat{U} \] \((e) \)
To obtain the equations in a molar basis:

\[
\begin{align*}
\text{Replace} & \quad M \left(\frac{v^2}{2} + \psi \right) \quad \text{with} \quad Nm \left(\frac{v^2}{2} + \psi \right) \\
\dot{M}_k \left(\hat{H} + \frac{v^2}{2} + \psi \right)_k & \quad \text{missing in book} \quad \hat{N}_k \left\{ H + m \left(\frac{v^2}{2} + \psi \right) \right\}_k \\
M\hat{U} & \quad N\hat{U}
\end{align*}
\]

KE and PE not important, no Shaft Work and only ONE Stream entering/leaving

\[
\frac{d}{dt} \left[U + M \left(\frac{v^2}{2} + \psi \right) \right] = \sum_{k=1}^{K} \dot{M}_k \left(\hat{H} + \frac{v^2}{2} + \psi \right)_k + \dot{Q} + \dot{W}
\]

\[
\frac{dU}{dt} = \dot{M} \hat{H} + \dot{Q} - P \frac{dV}{dt}
\]

and

\[
\frac{dM}{dt} = \dot{M}_1
\]

Missing in book
CLOSED SYSTEM

\[\dot{M}_1 = 0 \]

\[\frac{dU}{dt} = \dot{Q} - P \frac{dV}{dt} \]

or

\[dU = \delta Q - PdV \]

\[dH = \delta Q \quad \text{(for Constant P)} \]

Very well know forms of FIRST LAW FOR CLOSED SYSTEMS
Equation for a Change of State 1 \rightarrow 2

Integrate from t_1 to t_2

\[
\left\{ U + M \left(\frac{v^2}{2} + \psi \right) \right\}_{t_2} - \left\{ U + M \left(\frac{v^2}{2} + \psi \right) \right\}_{t_1} = \sum_{k=1}^{K} \int_{t_1}^{t_2} \dot{M}_k \left(\dot{H} + \frac{v^2}{2} + \psi \right)_k \, dt + Q + W
\]

where

\[
Q = \int_{t_1}^{t_2} \dot{Q} \, dt \quad W_s = \int_{t_1}^{t_2} \dot{W}_s \, dt \quad \int_{V(t_1)}^{V(t_2)} P \, dV = \int_{t_1}^{t_2} P \frac{dV}{dt} \, dt
\]

and

\[
W = W_s - \int_{V(t_1)}^{V(t_2)} P \, dV
\]

When fluid entering does not change in time

\[
\sum_{k=1}^{K} \int_{t_1}^{t_2} \dot{M}_k \left(\dot{H} + \frac{v^2}{2} + \psi \right)_k \, dt = \sum_{k=1}^{K} \left(\dot{H} + \frac{v^2}{2} + \psi \right)_k \int_{t_1}^{t_2} \dot{M}_k \, dt
\]

\[
= \sum_{k=1}^{K} \Delta M_k \left(\dot{H} + \frac{v^2}{2} + \psi \right)_k
\]
DIFFERENCE FORMS

General equation
\[
\left[U + M \left(\frac{v^2}{2} + \psi \right) \right]_{t_2} - \left[U + M \left(\frac{v^2}{2} + \psi \right) \right]_{t_1} = \sum_{k=1}^{K} \int_{t_1}^{t_2} \dot{M}_k \left(\hat{H} + \frac{v^2}{2} + \psi \right)_k \, dt + Q + W \tag{a}
\]

Special cases:
(i) Closed system
\[
\left[U + M \left(\frac{v^2}{2} + \psi \right) \right]_{t_2} - \left[U + M \left(\frac{v^2}{2} + \psi \right) \right]_{t_1} = Q + W \tag{b}
\]
and
\[
M(t_1) = M(t_2)
\]

(ii) Adiabatic process
In Eqs. a and b
\[
Q = 0 \tag{c}
\]

(iii) Open system, flow of fluids of constant thermodynamic properties
\[
\sum_{k=1}^{K} \int_{t_1}^{t_2} \dot{M}_k \left(\hat{H} + \frac{v^2}{2} + \psi \right)_k \, dt = \sum_{i=1}^{K} \Delta M_i \left(\hat{H} + \frac{v^2}{2} + \psi \right)_k \tag{d}
\]
in Eq. a

(iv) Uniform system
\[
\left[U + M \left(\frac{v^2}{2} + \psi \right) \right] = M \left(\hat{U} + \frac{v^2}{2} + \psi \right) \tag{c}
\]
in Eqs. a and b

To obtain the equations in a molar basis:

Replace
\[
M \left(\frac{v^2}{2} + \psi \right) \quad \text{with} \quad Nm \left(\frac{v^2}{2} + \psi \right)
\]

\[
\dot{M}_k \left(\hat{H} + \frac{v^2}{2} + \psi \right)_k \quad \text{with} \quad \dot{N}_k \left[H + m \left(\frac{v^2}{2} + \psi \right) \right]_k
\]

\[
M \dot{U} \quad \text{with} \quad N \dot{U}
\]
Real fluids need pressure or molar volume.

But U and H are monotone with temperature (the higher the temperature, the higher is U or H). So add a known amount of heat and measure the change in temperature. For constant volume

$$Q = NC_V\{T(t_2) - T(t_1)\}$$

Therefore

$$C_V = \frac{Q}{N\{T(t_2) - T(t_1)\}}$$
BUT \[dU = Q - PdV = Q \]

(V is constant; Note that pressure will change)

or

\[U(t_2) - U(t_1) = Q \]

Thus, one can correlate the change in temperature of a known amount of gas at constant volume to its change of internal energy (a zero needs to be picked) by making these measurements. Also, one obtains \(C_V \)

\[C_V(T, V) = \lim_{T(t_2) - T(t_1) \to 0} \frac{U(t_2) - U(t_1)}{T(t_2) - T(t_1)} = \left(\frac{\partial U}{\partial T} \right)_V = \left(\frac{\partial U(T, V)}{\partial T} \right)_V \]
A similar experiment, now at constant pressure

\[Q = U(t_2) - U(t_1) + P\{V(t_2) - V(t_1)\} \]
\[= H(t_2) - H(t_1) = NC_P\{T(t_2) - T(t_1)\} \]

Then

\[C_P(T, P) = \left(\frac{\partial H}{\partial T} \right)_P = \left(\frac{\partial H(T, P)}{\partial T} \right)_P \]

Ideal Gases

* denotes functions of \(T \) only

\[C_P^*(T) = \frac{dH}{dT} \quad \text{and} \quad C_V^*(T) = \frac{dU}{dT} \]

But \(PV = RT \). Then \(H = U + RT \). Then

\[C_P^*(T) = \frac{dH}{dT} = \frac{d(U + RT)}{dT} = C_V^*(T) + R \]
We will use (in general)

\[C_p^*(T) = a + bT + cT^2 + dT^3 + \cdots \]

Solids and Liquids \(PV \ll U \).

Then

\[H \approx U \]

Lever RULE.