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Abstract

Recombinant DNA technology is important in the m@seduction of proteins for
academic, medical, and industrial use, and theigifed of the solubility of proteins is a
significant part of it. However, the protein salithp when overexpressed in a host
organism is difficult to predict. Thus, a modelpable of accurately estimating the
likelihood of proteins to form insoluble inclusitmodies would be highly useful in many
applications, indicating whether proteins necessithaperones to remain soluble under
the conditions within the host organism. To thmsl,esolubility data for proteins when
overexpressed ifEscherichia coli was compiled, and properties of the proteins Yikel
affecting solubility were identified as parametdos building solubility prediction
models. In this paper, three models were congdugsing discriminant analysis, logistic
regression, and neural networks. Significant patans were determined, and the
efficiencies of solubility prediction for the thrgeocedures were compared. Among the
properties investigatedg-helix propensity and asparagine fraction were thest
important parameters in the discriminant analysisdeft for logistic regression,
molecular weight, total number of hydrophobic resisl hydrophilicity index,
approximate charge average, asparagine fractia@htyaiosine fraction were found to be
the greatest contributors to protein solubilityor fhe neural network, the most important
parameters included the asparagine fraction, taiaiber of hydrophobic residues, and
tyrosine fraction. The asparagine fraction wagy@at importance, as it was the only
parameter found to be among the five most sigmfiga@rameters in all three models.
Post hoc evaluations of the models indicated that the disoant analysis model was
66.5% accurate, the logistic regression model wa®% accurate, and the neural
network model was 91.0% accurate. For the logistigression modelpost hoc
accuracies were shown to increase as predictiosslobility or insolubility neared high
probabilities. A priori evaluations were used to determine how well logisgtgression
and the neural network would predict solubility méw proteins. The discriminant
analysis was excluded from this study becausgass hoc accuracy was exceedingly
low. These studies showed that the logistic respesmodels tended to give higher
prediction accuracies than neural networks forenst not previously used in creating
the respective models, but logistic regression iptieths were highly skewed toward
insolubility, while neural network predictions wearere balanced overall.



1. Introduction

The use of recombinant DNA technology to produagtepns has been hindered
by the formation of inclusion bodies when overespesl inEscherichia coli (Wilkinson
and Harrison, 1991). Inclusion bodies are demsmluble protein aggregates that can be
observed with an electron microscope (Wilkinson Biadrison, 1991). The formation of
protein aggregates upon overexpressiok.inoli is problematic since the proteins from
the aggregate must be resolubilized and refolded,tben only a small recovery of the
initial protein is possible (Idicula-Thomas and &gl2005). Understanding the causes of
aggregation and developing a system to predictbddiu for proteins not recently
overexpressed are highly desirable goals. Thisldvenable researchers to predict the
relative difficulty of overexpressing proteins i coli in a soluble form using only the
protein’s amino acid sequence and perhaps some basondary structure information
without the necessity of performing investigativeperiments. This study aims at
producing a robust database of proteins, findincampaters that correlate well with
protein solubility, and using discriminant analydisgistic regression, and an artificial
neural network to maximize the classification aecyrof proteins as soluble or insoluble
based on the investigated parameters.

This article is organized as follows: We first diss the different parameters
investigated that contribute to protein solubilitf/e then present the three methods
evaluated and discuss their potentials. Next wesgmeand discuss the results of the
model formulations.

2. Protein Folding and Its Relation to Solubility

Protein folding describes the process by which pebyide interactions occur so
that the shape of the native protein is ultimatelsmed. Protein folding is directly
related to solubility because an unfolded proteas Imore hydrophobic amino acids
exposed to solvent (Murphy, 2006). Therefore, exirfolding gives a protein a much
higher probability of being soluble in aqueous #olu by minimizing hydrophobic
protein-solvent interactions.

Many studies have been conducted to determinehwlices predominate in
protein folding. These forces include hydrogendng and the hydrophobic effect (Dill,
1990) as well as electrostatic interactions ananédion of disulfide bonds (Murphy,
2006). Hydrogen bonding interactions are necedsacyeate alpha helical structure and
other interactions crucial to the formation of atpin in its native state; however, these
forces are not dominant in protein folding (Dill990). Studies using extremely
hydrophilic solvents have been conducted and hdnevis that they do not cause
unfolding of proteins; if hydrogen bonding predoates, the solvent should compete
effectively with the protein for its own hydrogenrials and cause unfolding (Dill, 1990).
It has also been shown that van der Waals interatilo not provide the dominant force
in protein folding. There is evidence that the rioydhobic effect is the dominant force in
protein folding (Dill, 1990). The evidence to soppthis includes the fact that nonpolar
solvents denature proteins, meaning internal hyusbjz residues of the protein rush to



associate with the nonpolar solvent molecules, inguthe protein to unfold. Second,
crystallographic studies have shown that nonpotsmidues are held together in the
protein center to form a hydrophobic core (Dill,909. Electrostatic interactions are
caused by the amino acid residues which are chaaggthysiological pH (7.4), which
include positively charged lysine, arginine, andtidine, and negatively charged
aspartate and glutamate (Murphy, 2006). Theseaictiens can help in protein folding
and stability by creating residue-solvent inte@usi at the protein surface as well as
residue-residue interactions within the protein (phy, 2006). Finally disulfide linkages
between cysteine residues are extremely importaptdtein folding and are very stable;
if the wrong disulfide linkages are formed or canfarm, the protein cannot find its
native state and will aggregate (Murphy, 2006).

The challenge of achieving consistently accuiatariori prediction of protein
solubility is far from being solvedAb initio solubility prediction requires folding
prediction to which interaction with the solvendanith other proteins needs to be added
and there is no such tool in existence. Thushit point, it is helpful to use semi-
empirical relationships to help predict proteinumlity. Certain patterns of protein
properties can be examined to see if correlati@ars e developed. In recent work, a
statistical tool called discriminant analysis (Whig&on & Harrison, 1991, Idicula-Thomas
& Balaji, 2005) was proposed. We discuss this amadther methods.

3. Models Used in Solubility Prediction
3.1 Discriminant Analysis

Discriminant analysis is a statistical method samito analysis of variance
utilized to model systems with categorical, rattiem continuous, dependent (outcome)
variables. The goal is to create a model capableeparating data into two or more
distinct groups based on associated values thathanmacteristic of the outcome groups.
In protein solubility prediction analyses, the gios are classified into two groups:
soluble and insoluble. Properties of proteins fuaitively or negatively affect solubility
(e.g., turn-forming residue fraction, hydrophilicity iex, etc.) act as the characteristic
parameters for group association. The ultimatpuwudf this model is a value known as
the canonical variable, which is used to distingudata among groups. The model for a
two-group system is of the following form (Wilking@nd Harrison, 1991):

CV=2LX, (1)
where: CV = canonical variable for a specificuthat
n = number of characteristic parameters integrat model
Xi = value of parameterfor specific datum
Ai = adjustable coefficient for parameter

The adjustable coefficient for each parameteragdified in order to maximize the
distinction between the data groups. The relasigmificance of a parameter in the



model can be estimated by normalizing the adjustablefficient via division by the
mean value of the parameter. The final compongatdiscriminant analysis model is a
value known as the discriminant. Data with canaini@riable values greater than the
discriminant are predicted by the model to beloagohe group; data with canonical
variables less than the discriminant belong tootiwer group. The results of this method
have shown some promise. The first study of thrs was conducted using discriminant
analysis with 81 proteins for which the solubiliggatus was known for each upon
overexpression irk. coli at 37°C from research (Wilkinson & Harrison, 1991%ix
parameters were included that were predicted tp kkssify proteins as soluble or
insoluble from theoretical considerations and thiestuded: charge average, cysteine
fraction, proline fraction, hydrophilicity, and &dtnumber of residues.

3.2 Logistic Regression

While discriminant analysis has been the methochofce for previous studies of
protein solubility prediction, it may not be thetiopal statistical approach to use. Indeed,
it includes the assumption that the predictor valfie., the protein parameters) follow a
joint multivariate normal distribution, an assungptithat does not hold in our case.
Medical researchers increasingly prefer a methodwkn as logistic regression to
discriminant analysis in studies with similarly khatomous outcomes such as in our case
where we want to distinguish soluble from insolulflgeter,et al., 1996). Additionally,
logistic regression analyses accommodate significaiisparate group sizes better than
discriminant analyses. That the protein databaseé to generate models in this study is
composed of 151 proteins that are insoluble whesredypressed iik. coli and only 75
that are soluble further suggests that logisticaggjon may be the preferable statistical
approach for protein solubility prediction.

Logistic regression is similar to discriminant s in that it utilizes various
parameters to predict to which group a datum bal@Adjison, 1999).

|09[L} =a+XBX, )
1-p,
where:
n = number of characteristic parameters integrat model
Xi = value of parameterfor specific datum
pi = probability of datum belonging to specified gpou
Bi = adjustable coefficient for parameter
a = adjustable intercept constant
{L} = oddsratio
1-p,

The other primary difference between logistic esgion and discriminant
analysis is the means by which the parameter cbeftis  values for logistic



regression) are determined. In logistic regresdima unconditional method of maximum
likelihood is utilized for this task (Kleinbauret al., 1998).

The output of the logistic regression models aueséd for the protein database
is a probability of solubility prediction. In gera, proteins whose predicted probabilities
for solubility are greater than 0.5 are classifeesdsoluble, while predicted probabilities
less than 0.5 correspond to classifications oflutsbty. However, since predictions that
near O or 1 represent less ambiguous distinctietsden groups than those around 0.5,
they may be stronger predictions of solubility. iSThossibility was also investigated in
this study.

3.3 Neural Networks

Neural network technology has been proposed ashanapproach for the
development of a correlation which can correctlgssify proteins based on various
parameters. A neural network is simply a data-flmachine that tries to develop an
accurate output signal (soluble or insoluble irs $tudy) based on given inputs (protein
parameters for in this study) (Dreyfus, 2006).

We used a feedforward neural network (also calleulliilayer perceptron) with
backpropagation (Figure 1).

Hidden layer

Figure 1: A simple representation of a multi-layer perceptron

The essential features of the network include ispattputs, a hidden layer or
hidden layers, and connection layers. The inpoitsist of the parameters that have been
hypothesized to correlate well with a given outputhe input parameters then flow
through the first connection layer, representedhgyarrows in the above diagram. In
this connection layer, weights or coefficients amaltiplied by each input parameter
value and then each input is fed to each nodeeohitiden layer. At the hidden layer, a
sigmoid function is applied to each input to noraeakthe data in the range of 0 to 1 and
then the outputs from each hidden node are lineawimbined. It is easy to see that
without a normalization, the network could see idate parameter as unimportant simply



because it has a value that may be orders of magngmaller than another parameter.
These outputs from the hidden layer are then prtpagthrough the next connection
layer where they are multiplied by another set efghts and then they travel to another
hidden layer or directly to the output layer. Thesthe point at which learning takes
place.

In our case, all proteins are run through the ngtwwith all their input
parameters, and the squared errors of predictioalf@roteins are summed and divided
by the product of the number of proteins and nundigparameters to give the mean
squared error (MSE), as follows:

MSE:ZZ(dij _yij)Z/(NP) 3

P
j=0i=0

where P is the number of output processing elemehisthe number of exemplars
(proteins) in the data seg; the network output exemplaat processing elemeptandd;
the desired output for exemplar i at processingiel# |.

The goal of the network is to reduce the valuM8E. The learning occurs when
this error is fed back to the first connection lagkthe network, or backpropagated and
this piece of information is used to adjust theghs in such a way that the MSE is
reduced on the next iteration. This leads intortyet requirement for network learning:
multiple iterations in which the MSE is continuatlgcreased by adjusting the weights in
each layer.

Studies have already been conducted using neatalorks as classifiers. One
study in particular looked at placing studentsnirglevel college math courses based on
high school grade point average, SAT math score,famal grade in algebra Il using a
neural network model (Sheel et al, 2001). Intengdyi, this study also used discriminant
analysis for classification and compared the twohmgs. Two experiments were
performed, the first using a set of 229 studenbtnmeéx and the second using only 99
student records. For these records, all parametergioned above were known, as well
as the entry level college course that the padrcstudent was taking. The first
experiment showed that discriminant analysis ctliyexdtassified 67.7% of the students
into the correct course based on the given parametieile a neural network classified
90% correctly, giving a 68.9% classification impeovent over discriminant analysis.
However, the second experiment with less trainiaiga dhowed the discriminant analysis
to be slightly better than the neural network, widiscriminant analysis correctly
classifying 74.7% of the students and the neurévori correctly classifying 72.7%.
This study is very similar to the classificatiomdy in protein solubility, with the only
real difference being the specific phenomenon ustety. Thus, neural networks may
be similarly useful in protein solubility predictio



4. Softwar e and Data
4.1 Software and Websites Used

SAS System software was utilized to perform thatigtical approaches
(discriminant analysis and logistic regression),levta program called NeuroSolutions
5.0 was used to produce a neural network. MictdSetel was also used extensively in
creating the protein database and calculating prp@rameters. The National Center of
Biotechnology Information Database (NCBI) was cdesl to obtain amino acid
sequences.

4.2 Protein Database

Literature research was done to find studies wheresolubility or insolubility of
a protein expressed in E. coli was discovered,rddgss of the focus of the paper, and
only proteins expressed at 37 C without fusionginst or chaperones were considered.
Fusion proteins and chaperones can make an insolpidtein soluble by helping
improve folding kinetics or changing its interactsoowith solvent (Harrison, 1999). This
can give false positives, making an inherently limisie protein soluble. The temperature
chosen is a common temperature for much work doie B. coli and it had to be
consistent because the temperature plays a factpratein folding in solubility. In
determining the sequence of each protein expressgtll sequences that were not part
of the expressed protein were excluded.

4 .3 Parameters Used

All parameters of the study from Wilkinson & Haois were included, at least
initially, as they all had some contribution to remt solubility classification. Eleven
additional parameters were also added: moleculaghtjetotal number of hydrophobic
residues, the average number of contiguous hydtmphesidues, the aliphatic index,
alpha helix propensity, beta sheet propensity,réi@ of alpha helix propensity to beta
sheet propensity, asparagine fraction, threoniaetibn, tyrosine fraction, and combined
fraction of asparagines, threonine, and tyrosine.

The average number of contiguous hydrophobic residuas added because a
recent study showed a pattern between the avemnagéer of contiguous hydrophobic
residues and protein solubility: proteins with aafinaverage number of contiguous
hydrophobic residues were found to be expressedluble form while those with a high
average were expressed as insoluble aggregatesrn(®tsal., 2004). This was also
addressed in an earlier study that also found t&atmore concentrated hydrophobic
residues were in a sequence, the more likely tbtejor would form insoluble aggregates
(Schwartz et al., 2001). It has been shown thag Istretches of hydrophobic residues
tend to be rejected internally in proteins, mearihrgy are exposed to the solvent (Dyson
et al., 2004). These polar-nonpolar interactiori$ tend to make proteins aggregate.
However, it is noteworthy that some proteins accaate long stretches of hydrophobic
residues in the folded core. For instance, UDPcébdglucosamine enolpyruvyl



transferase successfully incorporates a 12-redigdeophobic block in its folded state
(Dyson et al., 2004).

The aliphatic index was added following Idiculaatt (2005) (explained above)
and the three secondary structure parameters vdeledabecause certain patterns have
been seen from previous studies regarding proegorglary structure and solubility. A
recent study showed that point mutations of resdbat decrease alpha helix propensity
and increase beta sheet propensity in apomyoglodme been shown to cause protein
aggregation (Vilasi et al., 2006). This indicatit alpha helices may tend to favor
solubility while beta sheets may tend to favor agation. Another study supplied some
support for this hypothesis by showing that theaeg of acylphosphatase responsible
for protein aggregation have high beta sheet prgipeiChiti et al., 2002). Finally,
studies of secondary structure in inclusion bodiege shown high content of beta sheets
in inclusion with the beta sheet content increasingh increasing temperature
(Przybycien et al., 1994). Since increased tenpe¥s tend to cause aggregation as well
as cause beta sheet formation, it can be infefratlthe presence of beta sheets may
favor aggregation. The alpha helical propensity laetéh sheet propensity were calculated
by using weighted averages where alpha helical lzetd sheet propensities for each
amino acid were taken from Table 1 of Idicula et(@005). Finally, the molecular
weight was also added because the molecular weigielates better with size than
number of residues, since it considers the numbeesidues as well as the size of the
residues contained in the sequence.

The same equation used previously by Wilkinson &adrison (1991) was
utilized to calculate cysteine fraction by dividitige total number of cysteine (c) residues
by the total number of residues for a given proteifthe proline (p) fraction was
calculated in the same way. The turn-forming nesiraction was found by summing
the total number of asparagines (n), aspartateglgbines (g), serines (s), and prolines
(p) and then dividing the sum by the total numbkresidues in the protein. These
residues were chosen because they tend to be fautmins (Chou & Fasman, 1978).
The hydrophilicity index was found by summing each the twenty amino acids,
multiplying each by a weighting factor given by teeidy of Hopp and Woods(1981)
summing the values, and then dividing by the totaiber of residues in the protein
(Wilkinson & Harrison, 1991). The charge averagaswound by summing the total
number of aspartate (d) and glutamate (e) residodssubtracting the sum of the lysine
(k) and arginine residues (r), then this value diggled by the total number of residues.
These four residues are the only charged residuyasyaiological pH, with aspartate and
glutamate being positive and arginine and lysinadgeegative. The average number of
contiguous hydrophobic residues was calculated lwydidg the total number of
hydrophobic residues by the number of contiguougnsmts of hydrophobic residues,
where a contiguous segment could be one residoew than one residue. The residues
defined as hydrophobic in the previous study weseduand they consist of alinine (a),
isoleucine (i), leucine (I), phenylalanine (f), ptgphan (w), and valine (v) (Dyson et al.,
2004).



The aliphatic index was calculated using the follayequation (Idicula et al. 2005):

Al=(ng+2.9*n,+3.9%(n+n))/ Nt (4)

where the variable n represents the number of eifgpéype of residue in the protein.
The coefficients used (2.9 and 3.9) were correstiosed to account for the size
differences in the amino acids (Idicula et al., 200 Finally, the secondary structure
parameter was calculated for alpha helices firssloyming each type of amino acid in
the sequence, multiplying this sum by the alph&chkpropensity for the type of amino
acid and then summing these individual sums fotvaihty amino acids. Then this was
divided by the total number of amino acids in thgugence to give a weighted average for
alpha helical propensity. A similar procedure wased for beta sheet propensity. Then
the former value was divided by the latter.

4.4 Construction of Discriminant Analysis Model in SAS

Building a discriminant analysis model in SAS ifaly straightforward process.
Protein solubility and parameter data were subohitie part of the code using the
STEPDISC procedure. This evaluates each pararmeteadds or deletes one at a time
from the model using the F-to-enter, F-to-removéhoe with a confidence of 0.15. The
raw and standardized coefficients of the includadhmeters were determined by running
the new model with the CANDISC procedure. Finallye model was run with the
DISCRIM procedure to generate output data thatuohes apost hoc evaluation of the
model; the same proteins used to construct the hveele evaluated by it to determine
accuracy. The accuracy achieved by the model w#sws (<65.6%) and the predictions
so skewed toward solubility despite the small papoh size of soluble proteins that it
was deemed irrational to build models with traingggs and evaluate them with test sets;
such analysis provides an accuracy that is alwaysi than that determined Ipgst hoc
analysis. Thus, building training and test setsthe discriminant analysis approach
would likely have yielded accuracies that wereistigtlly little better than chance.

4.5 Construction of Logistic Regression Model in SAS

Full data sets were imported to SAS from the degabassembled in Excel and
evaluated using the LOGISTIC procedure. Modelseweonstructed in a reverse-
stepwise manner. In this method, the model was fun incorporating all seventeen
candidate parameters. In addition to providingnestes for the coefficients of each
parameter, SAS generates as output the probabdiigity of the null hypothesis for
each parameter. The null hypothesis is that anpeter does not have an affect on
distinction between groups, so high probability vesl indicated that a parameter
commanded little significance on solubility. Thtise parameter with the greatest null
hypothesis validity probability was removed frone tmodel, and the procedure was run
again with the remaining sixteen parameters. Tgrnscess was repeated until all
parameters included in the model exhibited nullbpinlities less than 0.05, indicating
95% significance.



With the appropriate model built, code was writtem evaluate solubility
probabilities for each protein predicted by the eladithin SAS, and to report these as
an output data set along with accuracy. As befaceuracy was determingubst hoc
using all proteins in the database. The databasealgo split into training and test sets
using the random number generator in Excel. Tmginsets used to build models
consisted of various percentages of the total datgbtest sets were composed of all
remaining proteins in the databadeost hoc evaluations of the training-set models were
peformed, ané priori evaluations used these models to predict the djubf the test-
set proteins.

4.6 Construction of the Neural Network Model

The neural network NeuroSolution 5.0 was usedtwstuct a neural network and
analyze the data. The two most convenient featwksthe program include
NeuralBuilder and NeuroExcel. NeuralBuilder allowse user to specify various
network parameters to create any custom networlevideuroExcel integrates Microsoft
Excel and NeuroSolutions.

The first step in developing the neural networkdedlovas to set aside separate
protein groups to two sets: the training set amdtéist set. The learning described in the
Introduction takes place in the training set. Tisishow the parameter weights were
created. The NeuroSolutions 5.0 tutorial suggeat@dinimum of one half of the total
exemplars (proteins) for training and cross valaafproved not to be helpful . The
learning curve is a convenient means to visuaheeetrrors decreasing as it gives a graph
of MSE versus epoch or iteration in the learning.

NeuralBuilder was used in this study to createoptimum neural network for
classification. With NeuralBuilder, the paramettitat can be optimized include training
algorithm, number of hidden layers, number of node®ach hidden layer, and the
hidden layer step size(s), output layer step simd,number of iterations. For this study,
only the number of nodes was optimized. The olggrithm used was the multi-layered
perceptron which was described in the Introductiod this algorithm is used widely for
these types of classification problems. It hasnbg®own mathematically that it is not
needed to increase the number of hidden layersgmestind the same optimal error can
be obtained simply by varying the number of nodgethe hidden layer (Dreyfus, 2006).
The hidden layer and output layer step size weratseonservative values that gave fast
convergence to a small error without diverging.vddgence is seen when the step sizes
are set too large, causing the error to oscillatdlyv Finally, the number of iterations
was set at 25,000 for all runs.
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5. Results and Discussion
Satistical Moddls

Previous work with discriminant analysis has yieldinited success. The first
study of this sort was conducted with a databasglgbroteins (Wilkinson & Harrison,
1991). Six parameters that were predicted to blelgsify proteins as soluble or insoluble
from theoretical considerations were included ia thodel: approximate charge average,
cysteine fraction, proline fraction, hydrophilicitpdex, total number of residues, and
turn-forming residue fraction . In this study, ttiscriminant analysis model classified
22 of 27 soluble proteins correctly and 49 of 54oiable proteins correctly, for an
overall accuracy of 88%. This waspast hoc analysis; the model was both built and
evaluated with all 81 proteins. The most imporjaatameters were found to be charge
average and turn-forming residue fraction.

Protein solubility prediction using discriminanbadysis was revisited recently
with a new set of parameters, a new data set, a@vanethodology (ldicula-Thomas &
Balaji, 2005). The parameters included were aliphadex, molecular weight, and net
charge. Aliphatic index is related to the combimeale fractions of alanine, isoleucine,
leucine, and valine, and this parameter has beewrsho be significantly higher in
thermophilic proteins than in ordinary proteinsor fhis study, a set of proteins was used
to develop the discriminant analysis prediction eloahd another set of proteins was
used to test the model. For the model of Idicutahias and Balajipost hoc analysis
gave 100% accuracy for the soluble proteins ottthi@ing set and 70% accuracy for the
insoluble proteins. When this analysis was corelictsing the correlation of Wilkinson
& Harrison, 78% accuracy was found for the insatuptoteins and 32% for the soluble
proteins. This seems to indicate that the new mpidelicted soluble proteins correctly
more often than the Wilkinson & Harrison model, lghthe reverse is seen for insoluble
proteins. Ultimately, the most important resulbsne from analysis of the test sets, the
sets to which the developed predictive correlativange not been exposed. When the test
protein sets were analyzed using the correlatioms fthe training sets, the same trend
was observed as with tipest hoc analysis, except the accuracies were lower. Toeein
of lducula-Thomas and Balaji correctly predicted60f test-set soluble proteins and
64% of test-set insoluble proteins while the Wion-Harrison correlation correctly
predicted 13% of test-set soluble proteins and @2%st-set insoluble proteins.

As described in the Data and Software section, tsadethe current work were
constructed via discriminant analysis in SAS, usiagous numbers and combinations of
included parameters. When all seventeen candipateameters were included in the
model, a 62.6%post hoc accuracy was achieved. The greatest accuracy¥%®6umas
given by the model generated by the STEPDISC prgeednd which included only the
two most significant parameters for discriminantalgsis: a-helix propensity and
asparagine fraction. Inmost hoc evaluation of this model, 70.7% of the soluble e
and 62.3% of the insoluble proteins were corredigsified into their respective groups.
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The raw and standardized coefficients for the patars §; in Equation 1) in the model
including all 17 parameters are given in Tablerld those for the final model with only
two significant parameters are given in Table 2.

Parameter Standqrdized Ra_lw_

Coefficient | Coefficient
Molecular Weight (kDa) 4.40 0.14
ap Propensity Ratio 3.16 66.60
B-sheet Propensity 2.17 70.78
Approximate Charge Average 0.44 10.55
Asparagine Fraction 0.39 19.23
Cysteine Fraction 0.31 10.21
Turn-Forming Residue Fraction 0.24 4.35
Proline Fraction 0.15 7.26
Aliphatic Index 0.09 0.00
Threonine Fraction 0.09 4.37
Average # of Contiguous Hydrophobic Residues 0.03 0.02
Combined Asn, Tyr, Thr Fraction 0.00 0.00
Tyrosine Fraction -0.24 -10.26
Total # of Hydrophobic Residues -0.32 0.00
Hydrophilicity Index -0.58 -3.71
a-helix Propensity -2.45 -65.22
Total Number of Residues -3.79 -0.05

Table 1. Coefficients for all-parameters-included discrimmbanalysis model

Parameter Standqrdized R"%‘W_
Coefficient | Coefficient
a-helix Propensity 0.68 18.12
Asparagine Fraction -0.64 -31.02

Table 2: Coefficients for final discriminant analysis model

Discriminant analysis model predictions were skewedvily toward solubility
(83.2% for the all-parameters-included model, idolg 100% of the soluble proteins
and 74.8% of the insoluble protiens) even thougielipaone-third of the proteins in the
database were solubleBncoli. These results indicated that discriminant anglysorly
modeled the system with the parameters given, temtain was next turned to logistic
regression models.

The logistic regression models were constructed ireverse-stepwise fashion,
with the parameter with the highest null hypothgsisbability removed at each step.
This procedure resulted in a model with six sigmifit parameters included: molecular
weight, total number of hydrophobic residues, hpthiticity index, approximate charge
average, asparagine fraction, and tyrosine fraction
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The following table lists the parameters that wexteluded from the final model, in order
of removal, with their corresponding null-hypottsegalues (p:

Parameter p, in Removal Step
Total Number of Residues 0.858
ap Propensity Ratio 0.839
Aliphatic Index 0.810
B-sheet Propensity 0.794
Average # of Contiguous Hydrophobic Residues 0.692
Proline Fraction 0.653
Threonine Fraction 0.628
Combined Asn, Tyr, Thr Fraction 0.628
Turn-Forming Residue Fraction 0.416
a-helix Propensity 0.398
Cysteine Fraction 0.155

Table 3: Removal of parameters from logistic regression rsde

It was somewhat unexpected that the parametextedelo secondary structuke (
helix and p-sheet propensities, turn-forming residue fractior®@re excluded from the
model, since these properties significantly affgrcttein folding and thus, the formation
of inclusion bodies. It is likely that these parders do not appropriately describe the
actual characteristics of the proteins; direct adeoy structure data would be most useful
in constructing a more precise model.

Deletion of the parameters listed in Table 3 &kt significant parameters in the
general logistic regression model. These parameter listed in Table 4, in order of fit
to the model, as indicated by\ymlues. Also provided in this table are the cqroesling
null-hypothesis probabilities, relative weights aodefficient estimatesf( values in
Equation 2) for the model constructed with the renpirotein database. The intercept
value @) for the model was 0.1649.

Relative Estimated

Parameter Pr Weight  Coefficient
Molecular Weight (kDa) <.0001 1.00 -0.1693
Total # of Hydrophobic Residues <.0001 0.95 0.0600
Hydrophilicity Index 0.0002 0.02 4.9629
Approximate Charge Average 0.0192 0.05 -12.3538
Asparagine Fraction 0.0325 0.11 -20.4259
Tyrosine Fraction 0.0511 0.07 15.1898

Table 4: Parameters included in logistic regression models

As can clearly be seen in Table 4, molecular weighd total number of
hydrophobic residues were the most significant ipatars in the logistic regression
model. After the parameters to be included in tbgistic regression analysis were
selected, models were built with 80%, 85%, 90%, 86&c of the total number of
proteins as training sets, with the remaining pnsteised as test sets to evaluateahe
priori accuracy of the models. The database was randdmigat times, so each model
was evaluated with the eight random data sets. aVeeaged results of these analyses are
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detailed in Table 5; the accuracies for gost hoc analysis of the model constructed of
the entire database (0% test-set size) are inclagedkll.

Training-Set Accuracy (%) |Test-Set Accuracy (%)
Test-Set Size
(percent of overall [Soluble|insolublg Overall [SolublginsolublgOverall
database)
0% 42.7 89.4 73.9
5% 43.7 87.1 72.4 25.3 100.0 88J6
10% 45.2 88.1 74.3 17.C 98.5 787
15% 47.2 86.7 73.1 19.5 98.5 787
20% 45.9 87.1 72.9 21.7 98.1 761

Table5: Averaged accuracies for logistic regression modéls test sets of
various sizes

The data in Table 5 distinctively indicate thae tlogistic regression models
significantly overpredict for insolubility, espelliain the test-sets. While the accuracy
of the logistic regression models was lower thamuldde necessary for an adequately
robust model, the low null-hypothesis probabilitedshe two most important parameters
(<0.0001) and for the model as a whot®.0001) indicate that the model fits the data
fairly well. Explanations may be speculated fais tbontradictory phenomenon. First,
the parameters used may not sufficiently charaxgesolubility properties, but intuition,
previous studies, and the null-hypothesis probiadsli described herein indicate
otherwise. The other possible explanation liesh protocol for making predictions
from the logistic regression models. Since theoute of the models is a probability of
solubility between 0 and 1, probabilities of 0.5gpeater are classified as predictions of
solubility, while probabilities less than 0.5 adassified as predictions of insolubility.
Problems could arise in probability predictionsttage very close to 0.5, as an incorrect
prediction is more likely to occur when the probig&piapproaches this delineation point.
Thus, if the database contains a significant numdsierproteins whose solubility
probability predictions are near 0.5, the overaltuaacy calculations could be skewed
even though the model gives a strong fit to tha.dat
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As a solution to this problem, tipest hoc predictions for the model that included
all proteins were analyzed for accuracy within 108ébability ranges. The result of this
analysis is presented in Figure 2.

Logistic Regression Model Accuracy

over Prediction Ranges
(Post hoc analysis of entire database)
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Figure 2: Logistic regression model accuracy over predictanmges

As can be seen in this figure, accuracy rates feignily improve when the
solubility predictions near the extremes of 0% &@D%. However, due to the
combination of the low number of soluble proteindhe database and the overprediction
of insolubility, accuracy predictions above 60%ubality may not be of high statistical
significance; while 100% accuracy was achievedhia 80%-90% range, only four
proteins fell into this category. While this islpm@ post hoc analysis, it stands to reason
that test-set accuracies would exhibit the samedtied increasing accuracy toward the
extremes of predictionA priori analyses of this kind were not performed, as thaber
of proteins in each range would be too small tethéstically significant.

Neural Network Optimization and Analysis

The first step in the optimization and analysistleé neural network involved
constructing eight randomized training/test setthwiach training set containing 80%
(181) of the total proteins and each test set aoin;20% (45) of the total proteins, with
no proteins being present in both sets. The eaidomized combinations were identical
to the ones used for the logistic regression arglyBhe number of nodes used was kept
at the default value of 4 for all eight sets. Bitep sizes were kept at the default values
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initially but it was discovered that divergence wseen with the step sizes that high.
Then, all step sizes were reduced by half. Thedndayer step size and output layer
step size were reduced to 0.5 and 0.05, respectidd problems with divergence were

seen with these smaller step sizes. As stateddydfte number of iterations was set at
25,000 and this proved sufficient, since convergewas reached quickly for all sets,

usually within 10,000 to 15,000 iterations. Thdimgal network weights were taken to

be the weighs giving the smallest MSE in the tragni The classification accuracies for
soluble proteins, insoluble proteins, and the stithe soluble and insoluble proteins for
training and test sets are presented below asmiagss.

Training Accuracy (%) Test Accuracy (%)
Random | Soluble Insoluble | Overall Soluble Insoluble | Overall
Set
1 67 97 86 78 89 87
2 97 94 95 50 90 78
3 82 98 93 29 65 53
4 90 98 95 29 77 62
5 84 98 95 32 54 38
6 82 97 92 46 81 71
7 80 93 88 40 63 58
8 80 98 92 47 60 56
Table 6: Randomized Training/Test Set Optimization

It is seen that the specific proteins used in tAming set play a strong role in the degree
of classification accuracy. While the training aeturacies are all relatively close, with
86% being the lowest for randomized set 1, and ®8%g the highest for randomized
sets 2, 4 and 5. The test set accuracies, howaneeremarkably different. The highest
test set accuracy is seen for randomized set lisaB@% while the lowest is 38% for
randomized set 5. For the test sets, both theboland insoluble accuracies fluctuate
wildly. Randomized training set 1 and test set éravtaken to have the optimal
distribution of proteins in training and test ssitsce this configuration gave the highest
overall test set accuracy. This specific distifutwas used for the next phase, node
optimization.

In the next phase of optimization, the number ofles was optimized using
randomized training set 1 and randomized test $et ttaining and testing, respectively.
All parameters, except the number of nodes, wep &kthe same values used in the
previous training/test set optimization. Traingugd testing were performed first using 3
nodes. After collecting the training and test aeturacies, the number of nodes was
increased by 1. This was repeated up to 9 nodes.
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The following table summarizes the effect of insedh number of nodes on training and
test set accuracies.

Training Accuracy (%) Test Accuracy (%)
Number of| Soluble Insoluble | Overall Soluble Insoluble | Overall
Nodes
3 84 91 89 65 84 78
4 67 97 86 78 89 87
5 83 96 91 55 84 74
6 95 98 97 60 82 74
7 94 99 97 60 79 72
8 95 99 98 60 76 71
9 94 99 97 50 74 66

Table 7. Node Optimization Using Randomized Training Setrid Test Set 1 for
Training and Testing

The overall training set accuracies decrease atititrease again, but all are acceptable
with the smallest being 86%. The trends indicdtat tas the number of nodes is
increased, the soluble, insoluble, and overalhing accuracies tend to increase also.
However, the reverse seems to be true for thestdsaiccuracies. The overall test set
accuracy increases from 3 to 4 nodes, but theredses from there. The insoluble test
accuracy follows the same pattern. It can be camed that there is a balance between
training set classification accuracy and test kedsification accuracy. It appears that as
the training set accuracy increases, the testceeracy decreases. The optimal number
of nodes was set at 4, since this number gave itiees$t test set accuracy. The
difference between the overall training set clasaifon accuracy and overall test set
classification accuracy is only 1%, which showst tthee algorithm created in training
generalizes well to proteins not used in training.

With the number of nodes set, it was desired tcheeethe size of the training set
affected the training set and test set accuracidlsof the previous tests were run using
80% of the proteins for training and 20% of thetpnas for testing. The training set size
was then increased to 85% of the total proteint) W% of the proteins used for test and
the training and test set accuracies were analyged.this, the number of nodes was set
at 4 and all other parameters were kept at the salnes used in the previous tests. The
following ratios of training set proteins to test proteins were also tested: 90/10 and
95/5. This method was repeated for the other sesadomized sets that were used
earlier. This gave eight different training andttaccuracies for each ratio of training to
test proteins. From this data, averages were takenthe eight randomized sets for each
ratio.
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The effect of training set size on training and te average classification accuracies is

illustrated in Table 8 below.

Training Accuracy(%) Test Accuracy(%)
% Training Set | Soluble Insoluble | Overall Soluble Insoluble | Overall
Proteins/% Test
Set Proteins
80/20 83 96 92 44 72 63
85/15 86 95 92 54 76 69
90/10 84 96 92 54 72 66
95/5 89 92 91 82 77 80

Table 8: Effect of Training Set Size on Averageifireg-Set and Test-Set Accuracies

Increasing the training set size has almost naetfe the overall training set accuracy as
all values are nearly identical. The overall trendtest set accuracy indicates that
increasing the training set size increases the gestaccuracy. This gives us some
confidence that probable accuracies in the rangé9e80% should be achieved when
testing new proteins using the training weightsaot#d using all 226 proteins as the
training set.

The final step involved using all 226 proteins fi@ining fost hoc) of the neural
network using 4 nodes and other parameters usetbpsty. The training set accuracy
for this training is presented in Table 9 below.

Training Accuracy (%)

Soluble Insoluble Overall

80 96 91

Table9: Training Accuracy Using All 226 Proteins for Traig

The classification accuracies of both the solublg iasoluble proteins are both relatively
high. The insoluble training accuracy is actuallgse to 100%. The classification

accuracy for soluble proteins is most likely lowsecause there are fewer soluble
proteins available for training. The overall tiag accuracy was roughly 3% higher here
than in the study of Wilkinson & Harrison (1991)datle database was much larger with
nearly three times as many proteins as their databa

The training set accuracy was analyzed furthebreaking the model down into
solubility output ranges in increments of 0.1 ramggfrom O to 1. The neural network is
similar to the logistic regression in that any authigher than 0.5 is rounded up to 1 and
any output lower than 0.5 is rounded down to zdtavas assumed that the outputs close
to 0.5 would be the most prone to be incorrectsifi@ations and the outputs closest to 0
and 1 would have the highest classification aceesacFor each output range (0-0.1, 0.1-
0.2, etc.), the percentage of proteins and classifin accuracy were calculated.
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The results are summarized in Figure 3 below.

Neural Network Model Accuracy over Prediction Ranges
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Figure 3: Model Accuracy over Prediction Ranges

The graph shows that 100% classification accuraay seen from 0.1-0.3 and from 0.5-
0.8 while worse accuracies were seen at the exserftowever, less than 15% of the
total proteins fell in the range of 0.1-0.9. Tma¢ans that the ranges that had 100%
classification accuracies only had between 2 ampdo€eins each. The range 0-0.1 had
the lowest classification accuracy but it also bzl largest number of proteins (64% of
the total proteins). It was initially thought thée post hoc accuracy could be improved
by only considering proteins with outputs near ¢ééremes, but since the vast majority
of outputs fall at the extremes anyway, this waubd be helpful. This is in contrast with
the logistic regression model, which did have anifigant number of proteins with
outputs closer to 0.5. This indicates that theralenetwork model makes more decisive
decisions based on its training than the logigtgreéssion model and this is why {bast
hoc accuracy is higher.

The magnitudes of the weights from the hidden layige insight into which
parameters are most important in accurate solybdiassification. The larger the
magnitude of a weight, the more important the patamis in classifying protein
correctly as soluble or insoluble. There are 6&fts given for the output of the hidden
layer, 17 parameters for each of the 4 nodes. Badh is independent of the next and so
there are some differences in weights for a giverameter between nodes. For each
individual parameter, an average was taken oveiotlrenodes.
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The averaged weights over the 4 nodes for all X@meters are presented in Figure 4
below

Parameter Contribution- Averaged over 4 Nodes
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Figure 4: Protein Parameter Contributions to Protein Classibn

The most important contributor to correct classifiien of proteins as soluble or insoluble
is asparagine fraction, with the total number ofidephobic residues and tyrosine
fraction being the second and third most importaespectively. The turn-forming
residue fraction, average number of contiguous dpfainbic residues, and aliphatic index
had the smallest contributions in classifying pirtgecorrectly, although they were not
negligible. It is interesting that the asparagirection and tyrosine fraction were the
most important parameters when there was no thealrdtasis for adding them. They
were included because they were previously showmat@ a significant contribution to
correct protein solubility classification (Idiculat al., 2005). Unlike the study of
Wilkinson and Harrison (1991), this neural netwarkdel found cysteine fraction, turn-
forming residue fraction, and hydrophilicity indexhave small contributions to accurate
solubility prediction. The secondary structuregmaeters (alpha helical and beta sheet
propensities), while not the most important pararstdid have significant contributions
to solubility prediction. More research shoulddezformed to try and make a theoretical
link between asparagines, threonine, and tyrosind, protein solubility, as they all had
significant contributions to accurate protein ciasstion as soluble or insoluble in this
study as well as the study of Idicuta et al. (2008j)ith molecular weight being the fifth
most important parameter, it appears that sizenisngortant aspect in determining
solubility. 1t is hypothesized that larger proiform protein-protein interactions more
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frequently since they are more concentrated pevengiumber of protein molecules and
this leads to aggregation. All parameters usedottstruct the neural network model,
including weights and momentum values for each rlay@e presented in the
supplemental information so that others can reteriédor further research and testing.

Finally, another important observation is that bftlee important parameters that
were identified and used in the final logistic reggion model, (molecular weight, total
number of hydrophobic residues, hydrophilicity iRdepproximate charge average,
asparagine fraction, and tyrosine fraction), hydrgty index and the approximate
charge average received less weight than othetsavdr@ disregarded in those models,
such as proline fraction, alpha helix propensitybeta sheet propensity. This indicates
that the primary structure data available is defitin describing solubility, sincaepriori
accuracies are low for all models and the signifogaof the parameters conflicts among
the different techniques employed. More precisé emmplete information about the
secondary structures of the proteins would likelyvle more accurate models, but such
data is not widely available for these proteinthat time.

Conclusion

A protein solubility database for recombinant geoesrexpressed i&. coli was
assembled from previously published work, increggime size of the database to 226
proteins. Protein properties that influence sditybivere identified as parameters for
modeling. Protein solubility models were constedcand evaluated using three different
approaches: discriminant analysis, which was usegrevious studies of this nature;
logistic regression, a more robust and appropstdgstical method given the properties
of the protein dataset; and neural networks, anr@mg adaptive technique that
develops a model by “learning” from the data. Answary of post hoc anda priori
accuracies for the resultant models is present@alute 7, below:

Post hoc accuracy A priori
Method (for entire prion accuracy
database) (probablerange)
Discriminant Analysis 66.5%
Logistic Regression 73.9% 78.7-88.6 %
Neural Networks 91.0% 69.0-80.0%

Table 10: Comparison opost hoc anda priori accuracies for the three models

Post hoc evaluations of accuracy, using all data both tddband to test the
models, indicate that the neural network is thet bbeedel for describing protein
solubility. While discriminant analysis models skdweavily toward predictions of
solubility, and logistic regression models skew aodvpredictions of insolubility, neural
network models demonstrate the best balance beta@eble and insoluble prediction
accuracies. Tha priori evaluations, using distinct randomized trainings det predict
solubility of test-set proteins, show that logistegression outperforms neural networks
in this task. Logistic regression models were akown to be very accurate (>90%)
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when generating predictions of solubility that re@h0% or 100%, but predictions near
50% were not statistically better than chance.aliinthe only parameter that was found
significant in all three models was the asparadmaetion. This indicates that more
research should be performed to investigate thebl@tween asparagine and solubility.

Recommendationsfor Further Study

While the results of the study suggest that nenetvorks work more efficiently
than discriminant analysis and logistic regressamal the overall accuracies are very
good, they could still be improved. Another partanehat should be explored to
improve classification accuracy is called the osms¢cond virial coefficient (Valente et
al., 2005). This thermodynamics parameter deseritd-body interactions, where a
positive value indicates repulsive interactions andegative value represents attractive
interactions (Valente et al., 2005). The invegdiaya of this parameter represents a
fundamentally different approach to protein foldiagd solubility than has been taken
previously. Instead of looking at protein-solventeractions, this approach looks at
protein-protein interactions. This new directiodicates that aggregation may be more a
result of attractive reactions between proteins ttepulsive reactions between protein
and solvent. The importance of the molecular wejggrameter in both the logistic
regression and neural network models lends sugpaitte potential of this parameter.
Proteins with higher molecular weights will be largnd will tend to be in closer contact
with neighboring proteins, making protein-proteiieractions more likely, which could
initiate aggregation.

Another topic for further investigation is the pitmslity of utilizing the three
models described herein in concert to predict mmos®lubility. Since discriminant
analysis models overpredict for solubility, preginos of solubility would be less likely to
be correct. Thus, if a protein was predicted by discriminant analysis model to be
soluble, it could then be sent to the logistic esgion model, which overpredicts for
insolubility. Also, consensus predictions coulddetermined from the three models, and
corresponding accuracies of prediction could bduayed.

Finally, it may be beneficial to add the longesh®ecutive hydrophobic string of
residues as a parameter. It was shown that theagevenumber of contiguous
hydrophobic residues was not an important parambterit is possible that taking an
average compressed the values into a small rarsgl{y between 1.5 and 2). This may
be a better parameter for considering hydrophasadues.
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