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Abstract

Several papers have been presented in the last years regarding the design of reliable sensor networks. In all these papers, the
system reliability was maximized, constrained by a fixed number of sensors. In these models, the cost has played an indirect
unclear role. A minimum cost model for the design of reliable sensor networks is presented in this paper. The connections with
previous models are established, showing that they are a particular case of the model stated in this work. © 2000 Elsevier Science
Ltd. All rights reserved.
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1. Introduction

Sensors are needed in a process plant for a variety of
purposes. The most important are control and monitor-
ing, but other non-traditional activities such as safety,
fault detection and production accounting have been
incorporated as clients of a data processing system.
Recently, on-line optimization has added new needs for
reliable process data of good quality. Consequently, the
selection of sensors in chemical plants to fulfill reliabil-
ity issues has emerged as a topic of interest.

Ali and Narasimhan (1993) proposed to maximize
reliability, which is based on sensor failure probability,
observability of variables as well as redundancy. They
introduced the concept of reliability of estimation of a
variable. In addition they proposed to measure the
reliability of the system as the smallest reliability among
all variables. While looking at all networks containing
the minimum set of sensors to achieve observability
they formulated a Max–Min problem using reliability
as the objective function. Lately, Ali and Narasimhan
(1995) extended their previous work to redundant net-
works. Their algorithm uses graph theory to build

networks with a specified number of sensors and maxi-
mum system reliability. In a recent paper, Sen,
Narasimhan and Deb (1998) presented a genetic al-
gorithm that can be applied to design non-redundant
sensor networks using different objectives functions.

Departing from graph theory and linear algebra ap-
proaches, Bagajewicz (1997) formulated a MINLP
problem to obtain cost-optimal network structures for
linear systems subject to constraints on precision and
robustness, that is defined in terms of measures that
allow the sensor network to effectively manage gross
errors.

This paper concentrates on the connection between
the models based on reliability goals and the minimum
cost model subject to reliability constraints. The mini-
mum-cost model subject to reliability constraints is
presented first. Following, the Maximum Reliability
Model presented by Ali and Narasimhan (1993, 1995) is
reviewed and its connections to mathematical program-
ming are analyzed. In the next section, a Generalized
Maximum Reliability model is presented, that is
derived using the minimum cost model as starting point
and a duality property of optimization problems. The
connections to the model developed by Ali and
Narasimhan (1993) are established next. Finally, exam-
ples are shown illustrating the power of the minimum
cost approach in terms of its ability to handle situations
and constraints that the maximum reliability model
cannot solve.

* Corresponding author. Tel.: +1-405-3255811; fax: +1-405-
3255813.

E-mail addresses: bagajewicz@ou.edu (M. Bagajewicz),
msanchez@plapiqui.edu.ar (M. Sánchez)

0098-1354/00/$ - see front matter © 2000 Elsevier Science Ltd. All rights reserved.
PII: S 0 0 9 8 -1354 (99 )00324 -5



M. Bagajewicz, M. Sánchez / Computers and Chemical Engineering 23 (2000) 1757–17621758

2. Minimum cost model

The design of sensor networks subject to reliability
constraints can be written as follows:
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where M1 is the set of streams where sensors
can be placed, MR is the set of variables whose reliabil-
ity is to be constrained, qi are the binary
variables determining whether a sensor is located in
stream Si (qi=1), or not (qi=0), and ci are the
corresponding costs. The reliability of each variable is
calculated using the failure probabilities of all the sen-
sors participating in the cutsets that can be used to
calculate it. Ali and Narasimhan (1993) and Ali
and Narasimhan (1995) discussed such expressions in
detail.

If all sensors have the same cost c, then �Öi ciqi=cN,
where N is the number of sensors. Therefore, one
can rewrite Eq. (1) as a minimum number of sensors
model:
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Problems (1) and (2) are mixed integer programming
problems. Moreover, the constraints regarding
reliability are constructive constraints, in the sense that
they involve an algorithm for the evaluation of reliabil-
ity. However, an explicit mathematical expression to
calculate Rk(q) could be derived, but such expression
has not been yet presented or used. Thus, we use the
tree search methodology developed by Bagajewicz
(1997) for this type of problems. This methodology is
essentially based on an enumeration of every branch
of the tree of alternatives aided by a stopping
criterion.

3. Maximum reliability models

Ali and Narasimhan (1993) first defined the reliability
of a system, R, as the smallest reliability among all the
variables

R=Min
Ök

Rk(q) (3)

They proposed to search for a set of sensors that
satisfies the property that all the variables of the system
are observable while R is maximized. In fact the observ-
ability issue can be satisfied by choosing the sensors on
the chords of any spanning tree of the graph (Madron,
1992). In order to design non-redundant sensor net-
works, these authors presented a strategy where one
sensor is removed at a time and is being replaced by
another such that: (a) a spanning tree is obtained with
the new sensor: (b) the reliability of the new spanning
tree is higher.

Ali and Narasimhan (1995) extended their model to
consider a fixed number of sensors larger than the
minimum so that redundant systems are obtained. The
solution procedure relies on choosing a spanning tree
first. The remaining variables are added to some of its
branches. With this starting point the same strategy of
choosing a leaving variable and an entering variable is
attempted. Once the leaving variable is chosen, the
entering variable is selected in such a way that: (a) the
system reliability is increased; and (b) the new variable
belongs to a cutset that was not among the cutsets
estimating the variable of smallest reliability. This solu-
tion procedure guarantees observability of all variables
because the number of measurements is larger than the
minimum needed for such purpose and the cutsets are
chosen appropriately.

The model presented by Ali and Narasimhan (1993)
can be put in the following form

Max Min Rk(q)
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The first constraint fixes the number of sensors. In this
case N* is chosen to be the number of chords of a
spanning tree, which is equal to the number of streams
minus the number of units of the process flowsheet. The
observability requirement is mathematically expressed
by asking that the degree of estimability of all variables
to be equal to one. In turn, the degree of estimability
concept has been recently introduced by Bagajewicz
and Sánchez (1999a), it defines in how many ways a
measured or unmeasured variable can be calculated.

For the case of redundant networks the model pre-
sented by Ali and Narasimhan (1995) can be repre-
sented introducing a slight modification of the model
given by Eq. (4). The number of sensors N* is now
larger than the minimum number. In addition the es-
timability constraint is relaxed to allow redundancy and
at the same time ensure observability of all variables, as
shown next:
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4. Limitations of previous models

Even though the models given by Eqs. (4) and (5) are
successful in identifying reliable sensor networks, they
have some limitations:
1. Cost is not explicitly considered so that the solu-

tions may not be cost effective. Cost is only con-
trolled by N*.

2. The set of variables for which reliability is requested
(MR) is equal to the whole set of variables. Thus
models do not guarantee desired reliability levels on
specific variables, as they rely on maximizing only
the smallest reliability.

3. They cannot be used in conjunction with other goals
such as accuracy, error detectability, etc.

4. In the case of the design of redundant sensor net-
works, there is no control over which variable is
redundant. Moreover, there is no control on the
different ways a particular variable can be
estimated.

5. The set of variables where sensors can be placed
(M1) is also the whole set of variables. Although
some modifications can be made to address this
problem in the context of the methodology based on
the choice of leaving and entering variables, the
effect of such restrictions on the ability to find
optimal solutions has not been investigated.

To address these limitations we propose a
general maximum reliability model. In the next
section we present such model, and we establish its
connections with the minimum cost model given by Eq.
(1).

5. Generalized maximum reliability model

Assume now that a new constraint is added to Eq.
(1) in which the minimum reliability of all the variables
of interest is used. In such case one can rewrite Eq. (1)
as follows:
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Note that the addition of the constraint on the system
reliability is trivial, as it is guaranteed by the other
constraints on reliability of individual streams. We now
use the concept of duality, according to Tuy (1987) and
used previously by Bagajewicz and Sánchez (1999b) in
the context of sensor network design, to obtain the
result presented in Eq. (7) that allows to state the
maximum reliability model constrained by cost, as is
indicated by Eq. (8):
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The objective function of this problem is the same as
the one proposed by Ali and Narasimhan (1993). Fur-
thermore, a few simplifying assumptions will produce a
problem constrained by a minimum number of sensors,
which is the model they presented. Indeed, consider all
the sensors having the same cost, so that the cost
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constraint becomes a constraint on the total number
of sensors.

%
i=M 1

ciqi5cT [ %
i�M 1

qi5N* (9)

Thus, when the total number of sensors is set to a
minimum and the constraints on the reliability of in-
dividual variables are dropped, the problem becomes:
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Consider now the following problem, where the con-
straint is made an equality
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Problem (11) is a more stringent version of problem
(4) as it has a restricted set M1 where the sensors can
be placed, and a restricted set of variables of interest
MR. We now show that problems (10) and (11) have
the same reliability, but can have different solutions.

Property. The solution to problem (10) has the same
objective function value as the solution of problem
(11), or equivalently, problem (10) can have a binding
constraint at the optimum without altering the opti-
mum system reliability.

Proof : assume that the constraint is not binding.
Then, if q̃ is the vector corresponding to the optimal
solution

%
i�M 1

q̃iBN* (12)

Therefore, it is possible to add a sensor to the system
without violating Eq. (12). Such an addition can leave
the reliability of the system unaltered or increase it.
Assume without loss of generality that the optimum
of the problem corresponds to the reliability of esti-
mation of the flowrate of stream S1. That is

Min
Ök�MR

R0 k=R0 1 (13)

A new sensor can be located in a stream where a new

balance equation involving the flowrate of S1 cannot
be written. In such case the reliability of S1 is not
altered. On the contrary, if a new balance equation
can be written, then the reliability of S1 will increase,
because reliability is a monotone function of the
number of sensors involved. Q.E.D.

Although problems (10) and (11) have the same
optimal objective function value, problem (10), how-
ever, will render either the same set of sensors or a
set of sensors that is a proper subset of the solution
of problem (11).

The above generalized model addresses most of the
concerns raised when analyzing the procedure pre-
sented by Ali and Narasimhan (1993). It explicitly
considers the cost, it can impose lower bounds on the
reliability of specific variables, and it can restrict the
set where sensors can be located. We have therefore
established that the model given by Ali and
Narasimhan (1993, 1995) is just one simplified version
of the generalized maximum reliability model. In ad-
dition, the generalized maximum reliability model is
equivalent to the minimum cost model.

6. Reliable sensor networks with estimability and
precision constraints

Other constraints, such as bounds on the degree of
estimability or precision for key variables, can be eas-
ily added to the minimum cost model. These con-
straints restrict the feasible region and will remain as
constraints if the maximum reliability model is ob-
tained using the Tuy duality. Let us consider the ad-
dition of estimability constraints to the minimum cost
model (1)
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Using the duality according to Tuy, one can convert
this model into maximum reliability models. There-
fore, the model given by (14) is a generalized version
of (4) and (5). One must recall that (4) and (5) are
restricted to the case in which M1, MR and ME are
the whole set of sensors and Ek*=1. In the absence
of specific targets for the reliability of the variables,
one may find convenient to solve (5) or (6) or vari-
ants of it.

If precision constraints are considered, the follow-
ing minimum cost model results,
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Fig. 1. Simplified ammonia plant network.

by Ali and Narasimhan (1993) (Fig. 1). In case 1 of
Table 1, the problem presented by these authors is
solved using the minimum cost model for a
sensor cost of $2000. The same eight solutions
are found when the imposed constraints are equal to
the solution obtained by Ali and Narasimhan
(1993). Different sensor costs are considered
then, c= [1500 2000 2300 2800 1700 2000 1500 2800].
Thus only one optimal solution is obtained for case
2.

Reliability constraints on key variables are imposed
in cases 3 and 4, these types of solutions can not be
obtained using previous models presented in the liter-
ature. In case 5, reliability and estimability constraints
are considered, in case 6, we include tight constraints
with reliability constraints in different variables
than the estimability constraints. To show how reli-
ability and accuracy constraints interact, case 7 was
prepared.

8. Conclusions

A new generalized model for maximizing reliability
in sensor networks has been presented. Connections
to the minimum cost model constrained by reliability
have been established. It was shown that the new
model has superior capabilities to previous models
presented in the literature.
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Using the duality according to Tuy, one can convert
this model into a maximum reliability model.

7. Examples

Consider the ammonia network example presented

Table 1
Results for the minimum cost model

c Constraints bounds CostSolution Constraints at the solution

[0.9-0.9-0.9-0.9-0.81-0.81-0.81-0.9]1 R*=0.81*on [11111111] 6000S1 S4 S8

[0.9-0.9-0.9-0.81-0.9-0.9-0.81-0.81]S1 S5 S6

[0.9-0.9-0.9-0.9-0.81-0.81-0.81-0.9]S2 S4 S8

[0.9-0.9-0.9-0.81-0.9-0.9-0.81-0.81]S2 S5 S6

[0.9-0.9-0.9-0.9-0.81-0.81-0.81-0.9]S3 S4 S8

S3 S5 S6 [0.9-0.9-0.9-0.81-0.9-0.9-0.81-0.81]
S4 S5 S7 [0.81-0.81-0.81-0.9-0.9-0.81-0.9-0.81]
S6 S7 S8 [0.81-0.81-0.81-0.81-0.81-0.9-0.9-0.9]

[0.9 0.9 0.9 0.81 0.9 0.9 0.81 0.81]5200S1 S5 S62 R*=0.81*[11111111]

R*= [0.9 0 0.81 0 0 0 0.729 0]3
R1=0.9 R3=0.9 R7=0.9S1 S7 3000

R*= [0.95 0 0.95 0 0 0 0.95 0]4
S1 S5 S7 S8 7500 R1=0.9729 R3=0.9729 R7=0.9729

R*=0.81[1 0 1 0 0 0 1 0]5 S1 S2 S5 S7 S8 9500 R1=0.9973 R3=0.9973 R7=0.9802
E*= [2 0 3 0 0 0 2 0] E1=3 E3=3 E7=2

S1 S2 S5 S6 S7 S8 R1=0.998 R3=0.988 R7=0.989R*=0.9[1 0 0 1 0 0 1 0]6 11500
E*= [0 3 0 0 0 3 0 3] E2=3 E6=3 E8=3

R1=0.9729 R3=0.9639 R7=0.97297 8000S2 S5 S7 S8R*=0.9*[1 0 0 1 0 0 1 0]
s*= [0 3 0 0 0 2 0 2] s2=1.33 s6=1.991 s8=1.925
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