
Chemical Engineering Science 147 (2016) 30–46
Contents lists available at ScienceDirect
Chemical Engineering Science
http://d
0009-25

n Corr
E-m
journal homepage: www.elsevier.com/locate/ces
Global optimization of heat exchanger networks using a new
generalized superstructure

Sung Young Kim, Miguel Bagajewicz n

School of Chemical Engineering and Material Science, University of Oklahoma, 100 East Boyd Street, T-335, Norman, OK 73019-0628, USA
H I G H L I G H T S
� We extend the general HEN superstructure proposed by Floudas et al., 1986.

� we compare two different reformulations, and we solve the problem globally.
� We introduce a new feature to RYSIA, the global optimizer we developed recently, called lifting partitioning.
� Among results, we obtain structures that cannot be obtained using other models (stages, etc.).
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We present an extension of a previously presented superstructure (Floudas et al., 1986) for heat
exchanger network grassroots design. This extension is such that it includes several matches between
two streams, activates splitting control and allows for mixing temperature control. We solve this model
globally using RYSIA, a recently developed method bound contraction procedure (Faria and Bagajewicz,
2011a, 2011b, 2011c; Faria et al., 2015). We also add a new RYSIA feature called Lifting Partitioning.
Results show structures that cannot be obtained using the stages model (Yee and Grossmann, 1990) or
other similar restrictive models.

& 2016 Published by Elsevier Ltd.
1. Introduction

The problem of designing heat exchanger networks is perhaps the
oldest problem in the discipline of Process Synthesis/Process Systems
Engineering. Many articles were published and continue to be pub-
lished because, arguably, the problem continues to challenge acade-
mia and practitioners.

The latest good review is an annotated bibliography by Furman
and Sahinidis (2002). Of all this work, we specifically point to a
general superstructure for HEN design was presented by Floudas
et al. (1986), which is the starting point of our work. It consisted of
a model that included one heat exchanger between every hot and
cold stream, with connections made such that every possible
flowsheet is represented in the superstructure. The model, how-
ever, was not used in practice for a variety of reasons. First, the
MINLP solvers of the time, and many of them today, do not have
good enough feasibility steps that would guarantee at least one
local minimum (the model is non-convex) and without good initial
z).
points it usually turns infeasible. This discouraged researchers and
practitioners. Second, the model would render some impractical
answers, product of several splitting and mixing (we illustrate this
later in this article). Third, many systems that exhibit heat transfer
bottlenecks (i.e. pinches), require that some pairs of streams
exchange heat in more than one exchanger, typically two (one
exchanger on each side of the pinch, not consecutively, of course).

As a response to the aforementioned difficulties, a model more
amenable to MINLP solvers was proposed (Yee and Grossmann,
1990), which makes a series of assumptions: it assumes isothermal
mixing and presents several stages where more than one match
between streams takes place. What made the model attractive is
that the only nonlinearity could be confined to the objective
function. The model became very popular, to the point that some
other studies followed not assuming isothermal mixing (Björk and
Weterlund, 2002) and allowing some different configurations
(Huang and Karimi, 2013). All these efforts were not able to cap-
ture some alternative structures, like several exchangers in series
on each branch of each stage. Thus, the only model that is still
capable of capturing important and useful alternatives is a
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generalized superstructure where several exchangers between
two streams can be used.

As stated, the major difficulty of all the aforementioned models
is the high level of non-convexity of the MINLP models, which not
only leads to local optima, but may also fail to produce a feasible
answer if it is not provided with good initial points. The only
alternative to these models is the use of global optimization.

The academic efforts and the available commercial software were
reviewed in our previous article (Faria et al., 2015). We only highlight
what are the options we pursue in this article: all HENmodels contain
bilinear terms consisting of flowrates multiplied by temperatures. In
addition, for HEN models, the heat transfer equations relating heat
transferred with LMTD values are nonconvex. If one uses some
rational approximations (Paterson, 1984; Chen, 1987), one can make
appropriate substitutions (Manousiouthakis and Sourlas, 1992), to
reformulate the problem using as one containing purely quadratic/
bilinear models.

In this article, we explore the use of our bound contraction pro-
cedure for global optimization (Faria and Bagajewicz, 2011a). In our
lower bound, we follow the direct partitioning procedure 1 (DPP1)
strategy for the relaxation of bilinear terms and we exploit the uni-
variate nature of the LMTD terms (or their rational equivalents), to
build relaxations that do not require the addition of new variables
(Faria et al., 2015). Finally, we also use a new concept of partitioning
additional variables that help “lift” the value of the lower bound. We
call the technique Lifting Partitioning.

The paper is organized as follows: we present the revised super-
structure model first, including mixing and splitting control con-
straints. We follow with the lower bound model. We discuss the
bound contraction strategy next, including the lifting partitioning and
the uneven interval size bound contraction procedure. We then pre-
sent results.
2. Generalized superstructure

The HEN design model of the heat exchanger network uses the
superstructure model developed by Floudas et al. (1986). In order to
Fig. 1. Heat exchanger network superstr
describe how the HEN design model can be developed, we address a
simple network, which has one hot stream and two cold streams in
Fig. 1. Without loss of generality, we assume there are two heat
exchangers per hot/cold stream match and they are not necessarily
contiguous or in series. Fig. 1 illustrates the nature of the super-
structure for just one hot stream and two cold streams and two
exchangers per pair of streams, although the model can have many
exchangers.

In the original formulation by Floudas et al. (1986) the feasible
space is defined by nonlinear constraints, many of which are
bilinear, and other purely nonconvex functions. Bilinear functions
are included in the heat balances equations of heat exchangers and
mixers. Nonconvex functions are the part of heat exchanger area
calculations. The non-convex and bilinear MINLP model presented
in this paper differs slightly from the original formulation.

We first introduce the nomenclature for streams. They are
depicted in Fig. 2. Index i refers to hot stream and j to cold stream.
Each exchanger k has their inlet and outlet temperatures and
flowrates denoted by Thi;j;khx� in; Th

i;j;k
hx�out ; Fh

i;j;k
hx� in and Fhi;j;khx�out , res-

pectively. These inlet temperatures and flowrates are a product of
mixing a portion of the feed Fhi;j;k

in with streams from other
exchangers (i,jj,kk), f hi;jj;jkk;k. The variable f hi;j;jjk;kk represents the hot
stream from the heat exchanger (i,j,k) to split to the heat
exchanger (i,jj,kk). If kk is greater than k, there is no stream from
the heat exchanger (i,j,k) to (i,jj,kk).

We now present the equations of the model:

� Mass balances for splitters

Fi�
X
j

X
k

Fhi;j;kin ¼ 0 8 i ð1Þ

Fj�
X
i

X
k

Fci;j;kin ¼ 0 8 j ð2Þ

Fhi;j;khx�out�
X
jj

X
kk

f hi;j;jjk;kkþFhi;j;kout

0
@

1
A¼ 0 krkkð Þ 8 i; j; k ð3Þ
ucture; two exchangers per match.
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Fci;j;khx�out�
X
ii

X
kk

f cj;i;iik;kkþFci;j;kout

 !
¼ 0 krkkð Þ 8 i; j; k ð4Þ

� Mass balances for mixers

Fhi;j;kin þ
X
jj

X
kk

f hi;jj;jkk;k�Fhi;j;k
hx� in ¼ 0 kZkkð Þ 8 i; j; k ð5Þ

Fci;j;kin þ
X
ii

X
kk

f cj;ii;ikk;k�Fci;j;khx� in ¼ 0 kZkkð Þ 8 i; j; k ð6Þ

� Heat balances for mixers

FiT
i
H�
X
j

X
k

Fhi;j;k
out Th

i;j;k
out ¼ 0 8 i ð7Þ

FjT
j
C�
X
i

X
k

Fci;j;kout Tc
i;j;k
out ¼ 0 8 j ð8Þ

Fhi;j;kin Thi;j;kin þ
X
jj

X
kk

f hi;jj;jkk;kth
i;jj;j
kk;k�Fhi;j;khx� inTh

i;j;k
hx� in ¼ 0 kZkkð Þ

8 i; j; k ð9Þ

Fci;j;kin Tci;j;kin þ
X
ii

X
kk

f cj;ii;ikk;ktc
j;ii;i
kk;k�Fci;j;khx� inTc

i;j;k
hx� in ¼ 0 kZkkð Þ

8 i; j; k ð10Þ

� Heat balances for heat exchangers

Qi;j;k�Fhi;j;khx� in Thi;j;khx� in�Thi;j;k
hx�out

� �
¼ 0 8 i; j; k ð11Þ

Qi;j;k�Fci;j;khx� in Tci;j;khx� in�Tci;j;khx�out

� �
¼ 0 8 i; j; k ð12Þ

� Overall heat balances for each stream (we assume the utilities are
last)

Fi THIN
i �THOUT

i

� �
¼
X
j

X
k

Qi;j;kþQCU
i 8 i ð13Þ

Fj TCOUT
j �TCIN

j

� �
¼
X
i

X
k

Qi;j;kþQHU
j 8 j ð14Þ

� Hot and cold utility load

QCU
i ¼ Fi Ti

H�THOUT
i

� �
8 i ð15Þ

QHU
j ¼ Fj TCOUT

j �Tj
C

� �
8 j ð16Þ
Fig. 2. Stream nomenclatures for temperatures and flowrates.
� Logical constraints

Qi;j�ΩZi;jr0 8 i; j; k ð17Þ

QCU
i �ΩZCU

i r0 8 i ð18Þ

QHU
j �ΩZHU

j r0 8 j ð19Þ

The value of Ω used is Ω¼ Fj TCOUT
j �TCIN

j

� �
.

� Approach temperature

ΔThi;j;krThi;j;khx� in�Tci;j;khx�outþΓ 1�Zi;j;k
� � 8 i; j; k ð20Þ

ΔTci;j;krThi;j;khx�out�Tci;j;khx� inþΓ 1�Zi;j;k
� � 8 i; j; k ð21Þ

ΔTCU
i rTi

H�TOUT ;CUþΓ 1�ZCU
i

� �
8 i ð22Þ

ΔTHU
j rTOUT ;HU�Tj

CþΓ 1�ZHU
j

� �
8 j ð23Þ

The value of Ω used is Ω¼ Fj TCOUT
j �TCIN

j

� �
.

� Minimum temperature approach

ΔThi;j;kZEMATi;j 8 i; j; k ð24Þ

ΔTci;j;kZEMATi;j 8 i; j; k ð25Þ

ΔTCU
i ZEMATi;j 8 i ð26Þ

ΔTHU
j ZEMATi;j 8 j ð27Þ

� Equality of temperatures in splitters (inlet and outlet tempera-
tures)

Thi;j;kin ¼ THIN
i 8 i; j; k ð28Þ

Tci;j;kin ¼ TCIN
j 8 i; j; k ð29Þ

Thi;j;khx�out ¼ Thi;j;kout ¼ thi;j;jjk;kk 8 i; j; k ð30Þ

Tci;j;khx�out ¼ Tci;j;kout ¼ tcj;i;iik;kk 8 i; j; k ð31Þ

Additional constraints for temperature (when THIN
i r

TCOUT
j or THOUT

i rTCIN
j )

TCIN
j þEMATi;jrThi;j;k

hx� inrTHIN
i 8 i; j; k ð32Þ

TCIN
j rTci;j;khx� inrTHIN

i �EMATi;j 8 i; j; k ð33Þ

max TCIN
j þEMATi;j; T

HOUT
i

� �
rThi;j;khx�outrTHIN

i 8 i; j; k ð34Þ

max THOUT
i � THIN

i �TCIN
j

� �
; TCIN

j

� �
rTci;j;khx�out

r min THIN
i �EMATi;j; T

COUT
j

� �
8 i; j; k ð35Þ

max TCIN
j þEMATi;j; T

HOUT
i

� �
rthhi;j;jj

k;kkrTHIN
i 8 i; j; jj; k; kk ð36Þ

max THOUT
i � THIN

i �TCIN
j

� �
; TCIN

j

� �
rtccj;i;iik;kkr min THIN

i �EMATi;j; T
COUT
j

� �
8 i; ii; j; k; kk

ð37Þ

The value of EMAT can be chosen for each match, but in industrial
practices, usually two values are used, one for non-phase change
fluids and one for exchangers where phase changes (condensers,
etc.). The minimum values also change depending on the type of
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exchanger used (shell and tube, plate, etc.).
These constraints are needed when THIN

i rTCOUT
j or THOUT

i rTCIN
j ,

so that better bounds on temperatures are used. We believe this
helps computations.

� Limitation to avoid recycling

We avoid the recycle crossed out in Fig. 3. Specifically, when
the flow form one exchanger to another is positive, then the flow
back is forbidden. This helps computationally.X
k;kk

f hi;j;jjk;kk�Ymhi;j;jj UΓr0 ja jjð Þ 8 i; j; jj ð38Þ

X
k;kk

f hi;jj;jk;kk�Ymhi;jj;j UΓr0 ja jjð Þ 8 i; j; jj ð39Þ

Ymhi;j;jjþYmhi;jj;jr1 8 i; j; jj ð40Þ
X
k;kk

f cj;i;iik;kk�Ymcj;i;ii UΓr0 ia iið Þ 8 i; ii; j ð41Þ

X
k;kk

f cj;ii;ik;kk�Ymcj;ii;i UΓr0 ia iið Þ 8 i; ii; j ð42Þ

Ymcj;i;iiþYmcj;ii;ir1 8 i; ii; j ð43Þ
where Ymhi;j;jj denotes the existence of the stream between

heat exchanger matches (i,j) and (i,jj) and Ymcj;i;ii denotes the
existence of the stream between heat exchanger matches (i,j) and
(ii,j). The value of Γ is equal to Fi.

� Area calculations
The area of each exchanger can be expressed in terms of the heat
loads and the temperature differences using Chen's (1987) approx-
imation for the logarithmic mean temperature differences:

Qi;j;k�Ai;j;kUi;j;k

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ΔThi;j;kΔTci;j;k

ΔThi;j;kþΔTci;j;k
� �

2
3

s
¼ 0 8 i; j; k

ð44Þ
Fig. 3. Forbidde
QCU
i �ACU

i UCU
i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ΔTCU

i THOUT
i �TIN;CU

� � ΔTCU
i þ THOUT

i �TIN;CU

� �h i
2

3

vuut
¼ 0 8 i ð45Þ

QHU
j �AHU

j UHU
j

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ΔTHU

j TIN;HU�TCOUT
j

� � ΔTHU
j þ TIN;HU�TCOUT

j

� �h i
2

3

vuut
¼ 0 8 j ð46Þ

� Maximum temperature differences for mixers
When mixing streams that have different temperatures, there is
a concern about mechanical stresses in mixers. Thus, in order to
limit the temperature differences between streams that mix, we
use the following constraint:

αi;j;k�βi;j;krTMMaxi;j;k 8 i; j; k ð47Þ

where αi;j;k is the highest temperature of all the streams
entering the mixer and βi;j;k, is the lowest temperature of all
streams that are mixing. TMMaxi;j;k is the maximum difference
of temperatures allowed in a mixer. To identify αi;j;k and βi;j;k, we

introduce new binary variables Rhi;j;k
l1 and rhi;j;jj

k;kk to denote the
existence of streams with non-zero flow entering the mixer. If

Rhi;j;kl1 is one when Fhi;j;kl1 has nonzero flow and zero otherwise. If

rhi;j;jj
k;kk is one when f hi;j;jjk;kk has nonzero flow and zero otherwise.

Fhi;j;kl1 �Γ URhi;j;kl1 r0 8 i; j; k ð48Þ

f hi;j;jj
k;kk�Γ Urhi;j;jjk;kkr0 8 i; j; jj; k; kk ð49Þ

With these, we now determine the maximum and minimum
temperatures among all mixing streams.

� Maximum temperature among all hot streams in mixers

αi;j;kZThi;j;kin �Γ U 1�Rhi;j;k
in

� �
8 i; j; k ð50Þ

αi;j;krThi;j;kin þΓ U 1�Rhi;j;k
in

� �
þΜ U 1�PHupi;j;kin

� �
8 i; j; k ð51Þ
n recycles.
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αi;j;kZthi;jj;jkk;k�Γ U 1�rhi;jj;jkk;k

� �
8 i; j; jj; k; kk ð52Þ

αi;j;krthi;jj;jkk;kþΓ U 1�rhi;jj;jkk;k

� �
þΜ U 1�pHupi;jj;jkk;k

� �
8 i; j; jj; k; kk

ð53Þ

where PHupi;j;kin and pHupi;jj;jkk;k are binary variables to denote that
Thi;j;kin or thi;jj;jkk;k are the highest values. Thus, for consistency, we
request that

PHupi;j;kin þ
X
jj;kk

pHupi;jj;jkk;k ¼ Zi;j;k 8 i; j; k ð54Þ

PHupi;j;kin rRhi;j;kin 8 i; j; k ð55Þ

pHupi;j;jjk;kkrrhi;j;jjk;kk 8 i; j; jj; k; kk ð56Þ

� Minimum temperature among all hot streams in mixers

βi;j;krThi;j;kin þΓ U 1�Rhi;j;kin

� �
8 i; j; k ð57Þ

βi;j;kZThi;j;kin �Γ U 1�Rhi;j;kin

� �
�Μ U 1�PHloi;j;kin

� �
8 i; j; k ð58Þ

βi;j;krthi;jj;jkk;kþΓ U 1�rhi;jj;jkk;k

� �
8 i; j; jj; k; kk ð59Þ

βi;j;kZthi;jj;jkk;k�Γ U 1�rhi;jj;jkk;k

� �
�Μ U 1�pHloi;jj;jkk;k

� �
8 i; j; jj; k; kk

ð60Þ
where PHloi;j;kin and pHloi;jj;jkk;k are binary variables to denote that

Thi;j;kin or thi;jj;jkk;k are the lowest value.

PHloi;j;kin þ
X
jj;kk

pHloi;jj;jkk;k ¼ Zi;j;k 8 i; j; k ð61Þ

PHloi;j;kin rRhi;j;k
in 8 i; j; k ð62Þ

pHloi;j;jjk;kkrrhi;j;jjk;kk 8 i; j; k ð63Þ

An analogous procedure is applied to limit maximum and
minimum temperatures of cold streams inlet to mixers.

2.1. Number of branches upon splitting

We consider limiting the number of streams in which each
stream can divide. Consider NSpliti to be the maximum number of
splits one stream can divide. Then we write:X
j;k

Rhi;j;k
in rNSpliti 8 i ð64Þ

Rhi;j;kout þ
X
jj;kk

rhi;j;jj
k;kkrNSpliti 8 i; j; k ð65Þ

2.2. Number of splits

We also limit the number of times a stream is split as means to
search simpler networks. This is accomplished by the following
constraints

X
j;k

Rhi;j;k
in �1

0
@

1
A�Shi UΓr0 8 i ð66Þ

Rhi;j;kout þ
X
jj;kk

rhi;j;jj
k;kk�1

0
@

1
A�Shhi;j;k UΓr0 8 i; j; k ð67Þ
where Shi and Shhi;j;k are binary variables indicating that there
is a split. Thus, we write:

Shiþ
X
j;k

Shhi;j;krTSpliti 8 i ð68Þ

that is, limiting the number of times stream i splits to be smaller
than TSpliti. Similar equations are written for cold streams.

� Objective Function

The objective we use is total annualized cost.

min
X
i

QCU
i UCUcostþ

X
j

QHU
j UHUcost

þCf ixed

X
i;j;k

Zi;j;kþ
X
i

ZCU
i þ

X
j

ZHU
j

!
=n

0
@

þ Ci;j;k

X
i;j;k

Ai;j;kþCi

X
i

ACU
i þCj

X
j

AHU
j

!
=n

0
@ ð69Þ
3. Reformulation

We introduce the following new variables FThi;j;k
l1 ; f thi;j;jj

k;kk;
�

FT

ci;j;kl2 ; f tcj;i;iik;kkÞ to decompose the bilinear functions in the heat bal-
ance equations in the heat exchangers and mixers. These new
variables will play a role later when using RYSIA.

Fhi;j;k
l1 � Thi;j;kl1 ¼ FThi;j;kl1 8 i; j; k; l1 ð70Þ

f hi;j;jjk;kk � thi;j;jjk;kk ¼ f thi;j;jjk;kk 8 i; j; jj; k; kk ð71Þ

Fci;j;kl2 � Tci;j;kl2 ¼ FTci;j;kl2 8 i; j; k; l2 ð72Þ

f cj;i;iik;kk � tcj;i;iik;kk ¼ f tcj;i;iik;kk 8 i; ii; j; k; kk ð73Þ

Then the heat balance Eqs. (7)–(12) are changed to the linear
equations like below:

FiT
i
H�
X
j

X
k

FThi;j;kout ¼ 0 8 i ð74Þ

FjT
j
C�
X
i

X
k

FTci;j;kout ¼ 0 8 j ð75Þ

FThi;j;k
in þ

X
jj

X
kk

f thi;jj;jkk;k�FThi;j;khx� in ¼ 0 kZkkð Þ 8 i; j; k ð76Þ

FTci;j;kin þ
X
ii

X
kk

f tcj;ii;ikk;k�FTci;j;khx� in ¼ 0 kZkkð Þ 8 i; j; k ð77Þ

Qi;j;k� FThi;j;khx� in�FThi;j;k
hx�out

� �
¼ 0 8 i; j; k ð78Þ

Qi;j;k� FTci;j;khx� in�FTci;j;khx�out

� �
¼ 0 8 i; j; k ð79Þ
4. Full bilinear model reformulation

The lower bound model can be made bilinear as follows: We
start with Eq. (44) and we propose the following set of transfor-
mations:

Qi;j;k

Ui;j;k
�Ai;j;k

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ΔThi;j;kΔTci;j;k

ΔThi;j;kþΔTci;j;k
� �

2
3

s
¼ 0
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3

Qi;j;k

Ui;j;k
�Ai;j;k UDTi;j;k ¼ 0

DT3
i;j;k ¼ΔThi;j;kΔTci;j;k

ΔThi;j;k þΔTci;j;kð Þ
2

8><
>: ð80Þ

Qi;j;k

Ui;j;k
�Ai;j;k UDTi;j;k ¼ 0

DT3
i;j;k ¼

ΔTh2i;j;kΔTci;j;k þΔTc2i;j;kΔThi;j;k

� �
2

8>><
>>:

3

Qi;j;k

Ui;j;k
�Ai;j;k UDTi;j;k ¼ 0

WDTi;j;k ¼DT2
i;j;kDTi;j;k

WDTi;j;k ¼
ΔTh2i;j;kΔTci;j;k þΔTc2i;j;kΔThi;j;k

� �
2

8>>>>><
>>>>>:

ð81Þ

Qi;j;k

Ui;j;k
�Ai;j;k UDTi;j;k ¼ 0

WDTi;j;k ¼DT2
i;j;kDTi;j;k

WDTi;j;k ¼
ΔTh2i;j;kΔTci;j;k þΔTc2i;j;kΔThi;j;k

� �
2

3

Qi;j;k

Ui;j;k
�Ai;j;k UDTi;j;k ¼ 0

WDTi;j;k ¼ YDTi;j;kDTi;j;k

YDTi;j;k ¼DT2
i;j;k

WDTi;j;k ¼ Si;j;kþRi;j;k

2Si;j;k ¼ΔTh2
i;j;kΔTci;j;k

2Ri;j;k ¼ΔTc2i;j;kΔThi;j;k

8>>>>>>>>>>><
>>>>>>>>>>>:

8>>>>>>>>>>><
>>>>>>>>>>>:

ð82Þ

Qi;j;k

Ui;j;k
�Ai;j;k UDTi;j;k ¼ 0

WDTi;j;k ¼ YDTi;j;kDTi;j;k

YDTi;j;k ¼DT2
i;j;k

WDTi;j;k ¼ Si;j;kþRi;j;k

2Si;j;k ¼ΔTh2
i;j;kΔTci;j;k

2Ri;j;k ¼ΔTc2i;j;kΔThi;j;k

3

Qi;j;k

Ui;j;k
�Ai;j;k UDTi;j;k ¼ 0

WDTi;j;k ¼ YDTi;j;kDTi;j;k

YDTi;j;k ¼DT2
i;j;k

WDTi;j;k ¼ Si;j;kþRi;j;k

2Si;j;k ¼MTi;j;kΔTci;j;k
2Ri;j;k ¼NTi;j;kΔThi;j;k

MTi;j;k ¼ΔTh2i;j;k
NTi;j;k ¼ΔTc2i;j;k

8>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>:

8>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>:

ð83Þ

The same can be written for Eqs. (45) and (46). For this bilinear
model, one can use the same strategy for relaxation to obtain a
lower bound model as presented by Faria et al. (2011, 2015).
5. Lower bound model

In the bilinear terms, we choose temperature to be the parti-
tioned variable. In turn, the area equations are treated using the
image-partitioning model (Faria et al., 2015).

5.1. Bilinear terms

Eqs. (70)–(73) are considered for this decomposition.

● Partitioning Thi;j;kl1X
o

ThDi;j;k;o
l1 � vThDi;j;k;o

l1 rThi;j;kl1 r
X
o

ThDi;j;k;oþ1
l1

�vThDi;j;k;o
l1 8 i; j; k; l1 ð84Þ

X
o

vThDi;j;k;o
l1 ¼ 1 8 i; j; k; l1 ð85Þ

We partition flowrate Thi;j;k
l1 using o intervals. Then FThi;j;kl1 is

bounded by the following relations.

FThi;j;kl1 Z
X
o

ThDi;j;k;o
l1 � FhBi;j;k;o

l1 8 i; j; k; l1 ð86Þ

FThi;j;kl1 r
X
o

ThDi;j;k;oþ1
l1 � FhBi;j;k;o

l1 8 i; j; k; l1 ð87Þ
The variable FhBi;j;k;o
l1 is introduced to replace the product of the

partitioned flowrates and binary variables. According to the direct
partitioning procedures (DPP1) of (Faria and Bagajewicz, 2011b),
we have.

FhBi;j;k;o
l1 Z0 8 i; j; k; l1; o ð88Þ

FhBi;j;k;o
l1 �Fi � vThDi;j;k;o

l1 r0 8 i; j; k; l1; o ð89Þ

Fhi;j;k
l1 �FhBi;j;k;o

l1

� �
�Fi � 1�vThDi;j;k;o

l1

� �
r0 8 i; j; k; l1; o ð90Þ

Fhi;j;kl1 �FhBi;j;k;o
l1 Z0 8 i; j; k; l1; o ð91Þ

The same procedure is used to partition Tci;j;kl2 ; thi;j;jjk;kk and tcj;i;iik;kk.

5.2. Nonlinear function

We now work on Eq. (44), by partitioning the temperature
differences first, as follows:X
n1

ΔThDi;j;k;n1 � Yhi;j;k;n1rΔThi;j;kr
X
n1

ΔThDi;j;k;n1þ1

�Yhi;j;k;n1 8 i; j; k ð92Þ
X
n2

ΔTcDi;j;k;n2 � Yci;j;k;n2rΔTci;j;kr
X
n2

ΔTcDi;j;k;n2þ1

�Yci;j;k;n2 8 i; j; k ð93Þ
Thus, Eqs. (20) and (21) can be rewritten as follows:

Thi;j;khx� in�Tci;j;khx�outr
X
n1

ΔThDi;j;k;n1þ1Yhi;j;k;n1þΓ 1�Zi;j;k
� � 8 i; j; k

ð94Þ

Thi;j;khx� in�Tci;j;khx�outZ
X
n1

ΔThDi;j;k;n1Yhi;j;k;n1�Γ 1�Zi;j;k
� � 8 i; j; k

ð95Þ

Thi;j;khx�out�Tci;j;khx� inr
X
n2

ΔTcDi;j;k;n2þ1Yci;j;k;n2þΓ 1�Zi;j;k
� � 8 i; j; k

ð96Þ

Thi;j;khx�out�Tci;j;khx� inZ
X
n2

ΔTcDi;j;k;n2Yci;j;k;n2�Γ 1�Zi;j;k
� � 8 i; j; k

ð97Þ
X
n1

Yhi;j;k;n1 ¼ Zi;j;k 8 i; j; k ð98Þ

X
n2

Yci;j;k;n2 ¼ Zi;j;k 8 i; j; k ð99Þ

Now we rewrite Eq. (44) as follows:

Qi;j;k

Ui;j;k
�Ai;j;k

X
n1

X
n2

Yhi;j;k;n1Yci;j;k;n2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ΔThDi;j;k;n1þ1ΔTcDi;j;k;n2þ1

ΔThDi;j;k;n1þ1þΔTcDi;j;k;n2þ1
� �

2
3

s

r0 8 i; j; k ð100Þ
Next, after substituting the product of binaries (Yhi,j,k,n1, Yci,j,k,n2)

and area (Ai,j,k) in Eq. (100) with new positive continuous variable(Hi,j,

k,n1,n2), we get:

Qi;j;k

Ui;j;k
�
X
n1

X
n2

Hi;j;k;n1;n2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ΔThDi;j;k;n1þ1ΔTcDi;j;k;n2þ1

ΔThDi;j;k;n1þ1þΔTcDi;j;k;n2þ1
� �

2
3

s

r0 8 i; j; k ð101Þ
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To complement the above substitution, the following con-
straints are added:X
n1

Hi;j;k;n1;n2�ΩYci;j;k;n2r0 8 i; j; k;n2 ð102Þ

X
n2

Hi;j;k;n1;n2�ΩYhi;j;k;n1r0 8 i; j; k;n1 ð103Þ

X
n1

X
n2

Hi;j;k;n1;n2 ¼ Ai;j;k 8 i; j; k ð104Þ

A similar procedure can be applied to Eqs. (45) and (46). Finally,
in the case of the fully bilinear model we need to partition DTi;j;k;
ΔThi;j;k and ΔTci;j;k:P

l
D̂i;j;k;l ri;j;k;lrDTi;j;kr

P
l
D̂i;j;k;lþ1ri;j;k;l

P
l
ri;j;k;l ¼ 1

	
ð105Þ

where D̂i;j;k;l are given by all possible values of the cubic root
equation. The partitioning of ΔThi;j;k and ΔTci;j;k are already
considered above.
6. Lifting partitioning

To help increasing (to lift) the lower bound value, we resort to
partitioning of variables that participate in the objective function.
For these we introduce new variables for the total utility usage and
the total area.X
j

QHU
j ¼ TQ ð106Þ

X
i;j;k

Ai;j;k ¼ TA ð107Þ

These new variables TA and TQ are partitioned using m and p
intervals. We use binary variables vTQm for TQ and vTAp for TA.X
m

TQDm UvTQmð ÞrTQr
X
m

TQDmþ1 UvTQmð Þ ð108Þ

X
m

vTQm ¼ 1 ð109Þ

X
p

TADp UvTAp
� �

rTAr
X
p

TADpþ1 UvTAp
� � ð110Þ

X
p

vTAp ¼ 1 ð111Þ

TQDm and TADp are discrete points of the total area and
exchanged heat of heater.

We also experimented with partitioning of variables repre-
senting the product of flow and temperature, in Eqs. (70)–(74),
namely FThi;j;kl1 ; FTci;j;kl2 ; f thi;j;jj

k;kk and f tci;j;jjk;kk. We introduce new binary

variables vFThi;j;k
l1 ; vFTci;j;kl2 ; vf thi;j;jjk;kk and vf tci;j;jjk;kk for this purpose.X

o
dFThi;j;k;ol1 UvFThi;j;k;o

l1

� �
rFThi;j;kl1 r

X
o

dFThi;j;k;oþ1
l1 UvFThi;j;k;ol1

� �
ð112Þ

X
o

vFThi;j;kl1 ¼ 1 ð113Þ

X
o

dFTci;j;k;ol2 UvFTci;j;k;ol2

� �
rFTci;j;kl2 r

X
o

dFTci;j;k;oþ1
l2 UvFTci;j;k;ol2

� �
ð114Þ

X
o

vFTci;j;kl2 ¼ 1 ð115Þ
X
o

df thi;j;jj;ok;kk Uvf thi;j;jj;ok;kk

� �
r f thi;j;jj

k;kkr
X
o

df thi;j;jj;oþ1
k;kk Uvf thi;j;jj;ok;kk

� �
ð116Þ

X
o

vf thi;j;jj;ok;kk ¼ 1 ð117Þ

X
o

df tcj;i;ii;ok;kk Uvf tcj;i;ii;ok;kk

� �
r f tcj;i;iik;kkr

X
o

df tcj;i;ii;oþ1
k;kk Uvf tcj;i;ii;ok;kk

� �
ð118Þ

X
o

vf tcj;i;ii;ok;kk ¼ 1 ð119Þ

dFThi;j;kl1 ; dFTci;j;kl2 ; df thi;j;jjk;kk and df tci;j;jjk;kk are discrete points of the
bilinear variables.
7. RYSIA's solution strategy

After partitioning each one of the variables in the bilinear terms
and the nonconvex terms, our method consists of a bound con-
traction step that uses a procedure for eliminating intervals. In the
heat exchanger network problems the bilinear terms are com-
posed of the product of heat capacity flow rates and stream tem-
peratures, and the nonconvex terms are the logarithmic mean
temperature differences of the area calculation. The partitioning
methodology generates linear models that guarantee to be lower
bounds of the problems. upper bounds are needed for the bound
contraction procedure. These upper bounds are usually obtained
using the original MINLP model often initialized by the results
from the lower bound model.

We defined different variables:

� partitioning variables, which are the ones that generate several
intervals and are used to construct linear relaxations of bilinear
and nonconvex terms,

� bound contracted variables, which are also partitioned into
intervals, but only for the purpose of performing their bound
contraction (these are those that participate in the lifting), and

� branch and bound variables, which are the variables for which a
branch and bound procedure is tried (they need not be the same
set as the other two types of variables).

The global optimization strategy is now summarized as fol-
lows: we run the lower bound model first. Then we use the result
of the lower bound model as initial values for the upper bound
model. If the upper bound model turns infeasible, we fix all inte-
gers Zi;j;k;Rh

i;j;k
l1 ;Rci;j;kl2 ; rhhi;j;jjk;kk and rccj;i;iik;kk to be the same as those

provided by the lower bound, we ignore the mixing constraints
and solve the resulting NLP problem. If, in turn this NLP fails, we
additionally fix the Qi;j;k values to be the given by the lower bound
and solve again as an NLP. Finally, if these last also fails to give a
feasible solution, we fix all flows and remove the area equations
and area cost from the objective and solve the resulting LP pro-
blem. The area can be calculated from the LP solution and there-
fore the cost of a feasible point is obtained. After the upper bound
is computed, we proceed to perform bound contraction on all
variables as explained below.

7.1. RYSIA's bound contraction method

The bound contraction procedure used in the interval elim-
ination strategy used by RYSIA and presented by Faria and Baga-
jewicz (2011b, 2011c) and Faria et al (2015). We summarized the
basic strategy in this section. Further details of different strategies
can be found in the original paper.
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1. Run the lower bound model to calculate a lower bound (LB) of
the problem and identify the intervals containing the solution of
the lower bound model.

2. Run the original MINLP initialized by the solution of the lower
bound model to find an upper bound (UB) solution. If there is
failure use the alternatives provided above.

3. Calculate the gap between the upper bound solution and the
lower bound solution. If the gap is lower than the tolerance, the
solution was found. Otherwise go to the step 4.

4. Run the lower bound model

a) forbidding one of the intervals identified in step 1, or
b) forbidding all the intervals including the one identified in step

1, except the most distant.

5. Repeat step 4 for all the other variables, one at a time.
6. Go back to step 1 (a new iteration using contracted bounds

starts).

In step 4) if the solution is infeasible or if it is feasible but larger
than the upper bound, then all the intervals that have not been
forbidden for this variable are eliminated. The surviving region
between the new bounds is re-partitioned. If the solution is fea-
sible but lower than the upper bound, we cannot bound contract
and we move to the next variable.

The detailed illustration of the interval elimination using the
bound contraction procedures was introduced in our previous
publications using examples (Faria and Bagajewicz, 2011b, 2011c;
Faria et al., 2015). In those papers, different options for bound
contracting have been introduced: one-pass interval elimination,
cyclic elimination, single and extended interval forbidding (Fig. 4),
etc., all of which are detailed in the article referenced.

The process is repeated with new bounds until convergence or
until the bounds cannot be contracted anymore. If the bound
contraction does not occur anymore, we suggest increasing the
number of intervals and starting over. An alternative is branch and
bound but we already showed that is more time consuming,
especially if we use bound contracting at each node (Faria et al.,
2015).

7.2. RYSIA's upper bound calculation

We use the lower bound solution values as initial point for the
upper bound MINLP. However, when such MINLP fails (we used
DICOPT), we fix all integers Zi;j;k, Rh

i;j;k
l1 , Rci;j;kl2 , rhhi;j;jjk;kk and rccj;i;iik;kk to

be the same as those provided by the lower bound, and solve the
resulting NLP problem. If, in turn this NLP fails, we additionally fix
the Qi;j;k values to be the given by the lower bound and solve again
as an NLP. Finally, if these last also fails to give a feasible solution,
we fix all flows and remove the area equations and area cost from
Fig. 4. (a) Single interval forbidding, (
the objective and solve the resulting LP problem. The area can be
calculated from the LP solution and therefore the cost of a feasible
point is obtained. We did not experiment with alternatives to this
sequence.

We also found that in the above process the upper bound is
trapped in a point that is not optimal. We obtain solutions con-
taining bypasses around exchangers like the ones shown in Fig. 5.

To address this anomaly, there are two strategies. One is to
tolerate the anomaly until the end and remove them then. This is
legitimate because the upper bound does not have to be any local
optimum. It could be any good feasible point.

However, if one wants to prevent the model from having such
bypasses, then the following constraints can be added to the upper
bound model.X
jj;kk

rhi;jj;j
kk;krNSpliti U ihi;j;k 8 i; j; k ð120Þ

X
ii;kk

rcj;ii;ikk;krNSplitj U ici;j;k 8 i; j; k ð121Þ

X
jj;kk

rhi;j;jj
k;kkrNSpliti Ubhi;j;k 8 i; j; k ð122Þ

X
ii;kk

rcj;i;iik;kkrNSplitj Ubci;j;k 8 i; j; k ð123Þ

Rhi;j;kin þ ihi;j;kr1 8 i; j; k ð124Þ

Rci;j;kin þ ici;j;kr1 8 i; j; k ð125Þ

Rhi;j;kout þbhi;j;kr1 8 i; j; k ð126Þ

Rci;j;kout þbci;j;kr1 8 i; j; k ð127Þ

rhi;jj;jjjk;kk r2�rhi;j;jj
k;kk�rhi;j;jjjk;kk 8 i; j; jj; jjj; k; kk ð128Þ

rcj;ii;iiik;kk r2�rcj;i;iik;kk�rcj;i;iiik;kk 8 j; i; ii; iii; k; kk ð129Þ

where ihi;j;k and ici;j;k denote the existence of inlet streams from
other exchangers. In addition, bhi;j;k and bci;j;k denote the existence
of outlet streams going to other exchangers.
8. Examples

Three examples of different sizes are presented. The examples
were implemented in GAMS (version 23.7) (Brooke et al., 2007)
and solved using CPLEX (version 12.3) as the MIP solver and
DICOPT (Viswanathan and Grossmann, 1990) as the MINLP solver
on a PC machine (Xeon 3.2 GHz, 8GB RAM).
b) Extended intervals forbidding.
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Example 1: The first example is 10SP1 (Cerda, 1980). This example
consists of four hot and five cold streams and the data is given in
Tables 1 and 2. This example was solved using a superstructure
including one exchanger per match (k¼1) and we first did not
limit the number of splits, as well as the number of splitting. We
assumed a minimum temperature approach EMATi;j of 10 °C and
there is no double recycling stream in the network.

We partitioned Delta T and stream temperature with 2 intervals
and used the lifting partitioning and the extended interval forbidding.
Lower limits of total area and total heat of heating utilities in the
lifting partitioning are used for 3000m2 and 150 KJ/s from (Faria et al.,
2015). Upper limits are used 50% higher values than lower limits. We
first run this problem without lifting partitioning. The disappointing
results are shown in Table 3. We note that the number of intervals at
the end is still 2, which means that in all iterations there was some
bound contraction and that because there are 2 intervals, extended
elimination resulted in single elimination.

The globally optimal solution features an annualized cost of
$99,636,825 and was obtained in the root node of the 3th iteration
satisfying 1% gap between UB and LB (see Table 4). The results are
summarized in Table 5 and the optimal solution network is pre-
sented in Fig. 6. We run the branch and bound with lifting parti-
tioning without bound contraction in each node (as in Faria et al.,
2015). We obtained an objective value of $198,452,300 with 50%
tolerance gap after 200 iterations using 43 min 10 s CPU time.

We also run the bilinear model with the lifting partitioning and
obtained an objective value of $148,410,500 with 33% tolerance
Fig. 5. Anomalies found in upper bound solutions.

Table 1
Data for example 1.

Stream F [Kg/s] Cp [kJ/Kg °C] Tin [°C] Tout [°C] h [kJ/s m2 °C]

H1 2.634 1 160 93 0.06
H2 3.162 1 249 138 0.06
H3 4.431 1 227 66 0.06
H4 5.319 1 199 66 0.06
C1 2.286 1 60 160 0.06
C2 1.824 1 116 222 0.06
C3 2.532 1 38 221 0.06
C4 5.184 1 82 177 0.06
C5 4.170 1 93 205 0.06
HU 1 38 82 0.06
CU 1 271 149 0.06

Table 2
Cost data for example 2.

Heating utility cost 566,167 [$/(kJ/s)]
Cooling utility cost 53,349 [$/(kJ/s)]
Fixed cost for heat exchangers 5291.9 [$/unit]
Variable cost for heat exchanger area 77.79 [$/m2]

Table 3
Results example 1 without lifting partitioning.

# of starting
intervals

Objective value (upper
bound)

Lower bou

Extended elimination 2 $99,627,885 $5,620,271
gap after 20 iterations using 59 min 37 s cup time. We need to also
point out the price paid for considering alternatives to the stages
model, which took 20 s or less to solve this problem in 5 iterations
is fairly high, but tolerable for practical purposes. In addition, note
that although we used extended elimination, there was no
opportunity to employ it, as the number of intervals remains at 2.
Finally, we note that even with such a small gap (1%) the solution
is different than the one obtained by Faria et al. (2015), indicating
that there are several alternative solutions close to the global
optimum.

For comparison, we run BARON (Version 14.4) and after 2 h of
computation, we obtained an upper bound value of $1050 and a
lower bound of $5,615,430. ANTIGONE (Version 1.1), in turn, found
an upper bound value of $99,650,000 with a 94% gap after 2 h
running. We observe here the same behavior for ANTIGONE and
RYSIA, that is, an early identification of the optimum and a sub-
sequent improvement of the lower bound.

We added that the maximum temperature differences for
mixers were lower than 30 °C (Eqs. (47)–(63)) to avoid high tem-
perature difference in H4 and obtained an objective value of
$ 99,618,825 with 0.88% tolerance gap using 2 h 00 min 2 s of cpu
time. (Fig. 7). The structure of the HEN cannot be obtained with
the stages model.

Example 2: The third example consists of 11 hot and 2 cold streams
corresponding to a crude fractionation unit. The data is given in
Tables 6 and 7. We assumed a minimum temperature approach of
EMATi,j¼10 °C. We used a superstructure including one exchanger per
match (k¼1) and we first did not limit the temperatures upon mixing
and the number of splits, as well as the number of splitting.

We partitioned Delta T and stream temperature with 2 intervals
and used the lifting partitioning and the extended interval
nd Gap # of bound contraction
cycles

# of intervals at
convergence

CPU time

94.4% 10 2 3 h 05 m

Table 4
Result of example 1 when using lifting partitioning.

# of
interval

Objective value Gap # of bound
contraction
cycles

# of intervals at
convergence

CPU time

2 $99,636,825 0.9% 3 2 22 m41 s

Table 5
Heat exchanger results for example 1.

Area (m2) Duty [KJ/s]

EX1 190.20 130.73
EX2 328.63 228.60
EX3 672.48 336.31
EX4 716.08 316.00
EX5 264.86 309.03
EX6 248.37 176.48
EX7 130.28 150.82
EX8 2.17 3.51
EX9 83.94 41.95
CU1 219.87 115.84
CU2 263.94 139.01
HU 207.16 151.39
Total annual cost $99,636,825



Fig. 6. The solution network for example 1.

Fig. 7. The solution network for example 1 with mixing control (TMMax¼30 °C).
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forbidding as in example 1. Lower limits of TA and TQ are 8636 m2

and 23,566 KJ/s calculated from the pinch analysis. Upper limits
are used 30% higher values than lower limits.

Without lifting partitioning, we obtained an objective value of
$3,418,502 with 32.9% gap after 20 iterations employing 2 h
05 min 04 s of CPU time. We found the solution using lifting par-
titioning with a 1.8% gap between the UB and LB in Table 8. The
results are summarized in Table 9. The optimum solution,
presented in Fig. 8, has an annualized cost of $3,463,096. We
tested using the branch and bound with the lifting partitioning
without bound contraction in each node (as in Faria et al, 2015)
and obtained an objective value of $3,486,497 with 3.9% tolerance
gap after 200 iterations using 47 min 09 s CPU time. We also tested
the bilinear model with the lifting partitioning and obtained an
objective value of $3,513,866 with 4.7% tolerance gap after 40
iterations using 5 h 59 min 21 s cup time.



Table 6
Data for example 2.

Stream FCp [kJ/s C] Cp [kJ/kg C] Tin [C] Tout [C] H [kJ/s m2 C]

H1 TCR 166.7 2.3 140.2 39.5 0.26
H2 LGO 45.8 2.5 248.8 110 0.72
H3 Kerosene 53.1 2.3 170.1 60 0.45
H4 HGO 35.4 2.5 277 121.9 0.57
H5 HVGO 198.3 2.4 250.6 90 0.26
H6 MCR 166.7 2.5 210 163 0.33
H7 LCR 291.7 2.9 303.6 270.2 0.41
H8 VR 84.3 1.7 360 241.4 0.47
H9 LVGO 68.9 2.5 178.6 108.9 0.6
H10 SR-quench 27.6 3.2 359.6 280 0.47
H11 VR2 84.3 1.7 241.4 280 0.47
C1 Crude 347.1 2.1 30 130 0.26
C2 Crude 347.9 3.0 130 350 0.72
HU 1 500 499 0.53
CU 1 20 40 0.53

Table 7
Cost data for example 2.

Heating utility cost 100 [$/(kJ/s)]
Cooling utility cost 10 [$/(kJ/s)]
Fixed cost for heat exchangers 250,000 [$/unit]
Variable cost for heat exchanger area 550 [$/m2]

Table 8
Results of example 3 with the lifting partitioning and the extended interval
forbidding.

# of
interval

Objective
value (upper
bound)

Gap # of bound
contraction
cycles

# of intervals at
convergence

CPU time

2 3,463,096 1.8% 8 2 20 m 32 s

Table 9
Summary of results for example 3.

Total area 9793.84 m2

Number of exchangers 17
Heating utility 23,566 kJ/s
Cooling utility 11783.5 kJ/s
Final objective function (Total annualized cost) $3,463,096
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In addition, we run BARON (Version 14.4) and after 2 h running,
we obtained an upper bound value of $ 1050 and 2,317,170 for the
lower bound. ANTIGONE (Version 1.1), in turn, found an upper
bound value of $ 3,609,000 with a 36% gap after 2 h running. As in
the other two examples, we see RYSIA and ANTIGONE, but not
BARON, identifying solutions close to the global optimum early.

We also notice that VR1 is matching with the cold stream
twice, but using branches of the same split. Structures like the
ones shown in Fig. 8 also contain splits with more than one
exchanger in each branch, something that models like the stages
model (Yee and Grossmann, 1990) cannot capture. Moreover, the
structure also contains splitting inside branches that the stages
model cannot capture either. To avoid many splits in Fig. 9, the
limitation on the number of splits (Eqs. ((64) and 65)) is used. The
maximum number of splits limited to 3. We obtained an objective
value of $3,483,611 with 2.4% tolerance gap after 15 iterations
using 40 min 54 s cup time (Fig. 9).

Then, we added Tsplit¼1 to avoid splitting two times and
obtained an objective value of $3,502,522 with 2.9% tolerance gap
after 6 iterations using 2 h 14 min 55 s cup time (Fig. 10).

Example 3: This last example is added to highlights some of the
difficulties that one could encounter with certain problems. The
example consists of three hot streams, two cold streams (Nguyen
et al., 2010) (Tables 10 and 11). We assumed a minimum tem-
perature approach EMATi;j of 10 °C. We used a superstructure
including two exchanger per match (k¼2). The lower bounding
MILP model has 853 binary variables, of which 494 are partition-
ing variables and 2096 continuous variables. We first run this
model without any restrictions on the temperature difference in
mixing (Eqs. (47)–(63)).

For the illustration of this example, we used two initial inter-
vals of temperature differences (ΔThi;j;k, ΔTci;j;k, ΔTCU

i , ΔTHU
j ) and

stream temperatures (Thi;j;k
l1 , Tci;j;kl2 , thi;j;jj

k;kk, tc
j;i;ii
k;kk) for the lower bound

model. When no interval was eliminated and the lower bound and
upper bound gap was still larger than the tolerance, we increased
the number of intervals.

We tried single and extended interval forbidding in the bound
contraction procedure. In Table 12, we use partitioning of delta T
and stream temperatures, without lifting partitioning and bilinear
partitioning as described above. We note that if on additionally
partition and bound contract area and Q values the time increases
without any significant improvement.

We also run the branch and bound without bound contraction
in each node (as in Faria et al, 2015) and obtained an objective
value of $1,864,786 with 47% gap after 200 iterations employing
59 min 10 s of CPU time. For this, we partitioned ΔT and stream
temperatures and performed the B&B on all partitioned variables.
In addition, we run BARON (Version 14.4) and after 2 h running,
we obtained an upper bound value of $2,895,060 with a 54% gap.
ANTIGONE (Version 1.1), in turn, found an upper bound value of
$ 1,767,000 with a 32% gap after 2 h running.

To improve the relaxed lower bound model, we used the lifting
partitioning and partitioning of variables representing the product
of flow and temperature. We first tested adding the lifting parti-
tioning in the lower bound model. New variables for total area (TA)
and total heat amount of heater (TQ) were introduced and parti-
tioned through Eqs. (106)–(111). Lower limits of TA and TQ are
5590 m2 and 11,700 KJ/s calculated from pinch analysis. Upper
limits are used 30% higher values than lower limits. The results of
using our lifting partitioning is shown in Table 13. They are strik-
ingly similar because the extended elimination used 2 intervals
until the end.

Next, we added partitioning of bilinear terms (Eqs. (112)–(119))
into the model to help bound contracting. The results for different
forbidding methods in the bound contracting procedure with 1%
tolerance gap are shown in Table 14.

The lifting partitioning increased the lower bound and helped
to find the objective value satisfying 1% tolerance gap. However,
after adding partitioning of variables of the product of flow and
temperature, there was no improvements on the number of
iterations and CPU time because more partitioned variables were
added into the lower bound model and bound contracting
procedure.

We tested our bilinear and nonconvex model comparing to the
bilinear model, which used in the lower bound model (Eqs. (80)–(83)).
The result of bilinear model with the lifting partitioning and the
extended interval forbidding is shown in Table 15.

The optimum solution, presented in Fig. 11a, has an annualized
cost of $1,785,239. The results are summarized in Table 16. We also
show an alternative solution with a different Gap. Fig. 11b shows
an alternative solution. The purpose of showing these is to point
out that the problem is hard to solve, especially because there are
several solutions within a small gap. We also notice in this solu-
tion, a match between stream H1 and C2 that cannot be obtained
using other models, like the popular stage model (Yee and
Grossmann, 1990), even with the extensions to non-isothermal
mixing. Fig. 12, in turn, shows the solution when limiting splits.



Fig. 8. The solution network for example 3.

Fig. 9. The solution network with Nsplit¼3.
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Finally, we noticed that in all the above experiments with the
methodology, we reached the lower bound of the heating utility.
When we run using a bound that is lower, namely 11,000, we
obtained a solution in between bounds with 4.7% gap, in a time
much larger than the one reported above (1 h 36 m 22 s). At this
point in time, we leave for further work the investigation of what
makes this example behave this way, especially in view of the fact
that the following much larger examples behave so well. We



Fig. 10. The solution network with Nsplit¼3 and Tsplit¼1.

Table 10
Data for example 3.

Stream Fcp [kJ/s C] Cp [kJ/Kg °C] Tin [C] Tout [°C] h [kJ/s m2 °C]

H1 228.5 1 159 77 0.4
H2 20.4 1 267 88 0.3
H3 53.8 1 343 90 0.25
C1 93.3 1 26 127 0.15
C2 196.1 1 118 265 0.5
HU 1 500 499 0.53
CU 1 20 40 0.53

Table 11
Cost data for example 3.

Heating utility cost 100 [$/(kJ/s)]
Cooling utility cost 10 [$/�(kJ/s)]
Fixed cost for heat exchangers 250,000 [$/unit]
Variable cost for heat exchanger area 550 [$/m2]

Table 12
Results of partitioning of ΔT and stream temperature in the lower bound model.

# of starting intervals Objective value ($) (upper bound) Gap # of iterations # of intervals at convergence CPU time

Single interval elimination 2 1,789,968 45% 15 2 1 h 43 m 06 s
Extended interval elimination 2 1,789,968 45% 15 2 1 h 43 m 41 s

Table 13
Results with lifting partitioning.

# of starting intervals Objective value ($) (upper bound) Gap # of iterations # of intervals at convergence CPU time

Single interval elimination 2 1,785,239 0.74% 11 3 6 m 58 s
Extended interval elimination 2 1,785,239 0.74% 11 3 6 m 58 s
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Table 14

Results of lifting partitioning and partitioning the product of flow and temperature (FThi;j;k
l1 ).

# of starting intervals Objective value ($) (upper bound) Gap # of iterations # of intervals at convergence CPU time

Single interval elimination 2 1,785,239 0.74% 14 3 20 m 34 s
Extended interval elimination 2 1,785,239 0.74% 14 3 20 m 41 s

Table 15
Result of bilinear model lower bound.

# of start-
ing
intervals

Objective
value (upper
bound)

Gap # of bound
contraction
cycles

# of intervals
at convergence

CPU time

2 1,799,324 0.13% 16 4 13 m 03 s

Fig. 11. The solution network for example 1. Two alternative solutions (a) Gap¼0.74%, (b) Gap¼0.61%.
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Table 16
Summary of results for example 3a.

Total area 5,831.58 m2

Number of exchangers 8
Heating utility 11,700 kJ/s
Cooling utility 9450 kJ/s
Final objective function (Total annual cost) $1,785,239

Fig. 12. The solution with forbidding bypasses, TSPLIT¼1 and NSPLIT¼3 (Gap¼0.76%).
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tested with various conditions of
P

QHU
j in the lifting partitioning.

We first tested with the lower TQ limit of 11,000 KJ/s and the
upper TQ limit of 11,100 KJ/s in the lower bound model. We also
used

P
QHU

j ZTQ instead of
P

QHU
j ¼ TQ in the lifting partitioning.

Next, we fixed
P

QHU
j as 11,000, 11,050, 11,100 and 11,200. In all

cases, they spent much larger time than the one reported in
Table 13 and identified the global optimum early and spent the
rest of the time improving the lower bound.

We also note that RYSIA (our method) and ANTIGONE, but not
BARON, identify the global optimum early and spend the rest of
the time improving the lower bound.
9. Conclusion

We presented a new generalized superstructure model that
includes multiple stream matching. This is an extension of the
superstructure presented by Floudas et al. (1986) where only one
match with hot and cold stream pairs was allowed. Recognizing
that local solvers like DICOPT cannot obtain solutions, often ren-
dering infeasible if no goo initial point is provided, we solve it
globally using RYSIA, our bound contraction method for bilinear
problems (Faria et al., 2011) extended to monotone functions by
Faria et al. (2015). When applying these versions of RYSIA, we
found that the lower bound model is too relaxed and therefore the
bound contraction takes a long number of iterations. To fix this
problem, we introduce so-called “lifting partitioning”, which helps
the lower bound render higher values. We compare with the
bilinear reformulation and branch and bound and we present
results that highlight features in the HEN that other models
cannot model.
Nomenclature

Sets and indexes

i hot process stream
j cold process stream
k sharing of heat exchanger (i,j)
l1 hot stream location
l2 cold stream location (in: inlet , hx-in: inlet to HX, hx-out:

outlet from HX, out: outlet)
m exchanged heat-partitioning point
n1 hot side temperature differences partitioning point
n2 cold side temperature differences partitioning point
o flowrate partitioning point
p area partitioning point

Positive variables

Fhi;j;k
l1 heat capacity flow rate for hot stream

f hi;j;jjk;kk heat capacity flow rate related to mixers and splitters for
hot stream
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Fci;j;kl2 heat capacity flow rate for cold stream

f cj;i;iik;kk heat capacity flow rate related to mixers and splitters for
cold stream

Thi;j;kl1 temperature for hot stream

thi;j;jj
k;kk temperature related to mixers and splitters for

hot stream
Tci;j;kl2 temperature for cold stream

tcj;i;iik;kk temperature related to mixers and splitters for
cold stream

FThi;j;kl1 product of Fhi;j;kl1 and Thi;j;kl1

f thi;j;jjk;kk product of f hi;j;jjk;kk and thi;j;jjk;kk

FTci;j;kl2 product of Fci;j;kl2 and Tci;j;kl2

f tcj;i;iik;kk product of f cj;i;iik;kk and tcj;i;iik;kk
Ti
H hot stream temperature after the last mixer

Tj
C cold stream temperature after the last mixer

FhBi;j;k;o
l1 bilinear term between variable Fhi;j;kl1 and binary vThDi;j;k;o

l1
ΔThi;j;k hot side temperature difference
ΔTci;j;k cold side temperature difference

ΔTCU
i cold utility temperature difference

ΔTHU
j hot utility temperature difference

Qi;j;k heat exchanged between streams i and j for heat
exchanger (i,j,k)

QCU
i heat exchanged between i and the cold utility

QHU
j heat exchanged between j and the hot utility

Ai;j;k area of heat exchanger (i,j,k)

ACU
i area of cold utility

AHU
j area of hot utility

Hi;j;k;n1;n2 additional positive variable from the product of Yhi;j;k;n1,
Yci;j;k;n2 and Ai;j;k

αi;j;k maximum temperature inlet to mixer
βi;j;k minimum temperature inlet to mixer
TQ total utility usage
TA total area
Binary variables

Zi;j;k binary variable to denote kth sharing existence of match
(i and j)

ZCU
i binary variable to denote existence of cold utility

between hot stream i
ZCU
i binary variable to denote existence of cold utility

between hot stream i
vThDi;j;k

l1 binary variable related to the partitioned hot stream
temperature Thi;j;k

l1
Yhi;j;k;n1 binary variable related to the partitioned hot side tem-

perature differences
Yci;j;k;n2 binary variable related to the partitioned cold side tem-

perature differences
Rhi;j;k

l1 binary variable to denote the existence of hot stream

rhi;j;jjk;kk binary variable to denote the existence of hot stream

Rci;j;kl2 binary variable to denote the existence of cold stream

rcj;i;iik;kk binary variable to denote the existence of cold stream
pHupi;j;jjk;kk binary variable to denote the maximum temperature of
hot stream inlet to mixer

pHloi;j;jjk;kk binary variable to denote the minimum temperature of
hot stream inlet to mixer

Ymhi;j;jj binary variable to denote the existence of the recycle for
hot stream

Ymcj;i;ii binary variable to denote the existence of the recycle for
cold stream

Shi binary variable to denote existence of a split for inlet hot
stream i

Shhi;j;k binary variable to denote existence of a split for outlet
stream from heat exchanger

vTQm binary variable related to the partitioned total
utility usage

vTAp binary variable related to the partitioned total area
vFThi;j;kl1 binary variable related to the partitioned FThi;j;kl1

vFTci;j;kl2 binary variable related to the partitioned FTci;j;kl2

vf thi;j;jj
k;kk binary variable related to the partitioned f thi;j;jjk;kk

vf tci;j;jjk;kk binary variable related to the partitioned f tci;j;jjk;kk

ihi;j;k binary variable to denote existence of inlet streams from
other exchangers for hot stream

ici;j;k binary variable to denote existence of inlet streams from
other exchangers for cold stream

bhi;j;k binary variable to denote existence of outlet streams
going to other exchangers for hot stream

bci;j;k binary variable to denote existence of outlet streams
going to other exchangers for cold stream

Parameters

THIN
i inlet temperature of hot stream i

THOUT
i outlet temperature of hot stream i

TCIN
j inlet temperature of cold stream j

TCOUT
j outlet temperature of cold stream j

TOUT ;CU outlet temperature from the cold utility
TIN;CU inlet temperature from the cold utility
TOUT ;HU outlet temperature from the hot utility
TIN;HU inlet temperature from the hot utility
Fi specific inlet heat capacity flow rate of hot stream i
Fj specific inlet heat capacity flow rate of cold stream j
Ui;j;k overall heat transfer coefficient for heat exchanger (i,j,k)

UCU
i overall heat transfer coefficient for cold utility

UHU
j overall heat transfer coefficient for hot utility

HUcost hot utility cost
CUcost cold utility cost
ThDi;j;k;o

l1 discrete point of the partitioned temperature of hot
stream Thi;j;k

l1
ΔThDi;j;k;n1 discrete point of temperature differences in hot side of

heat exchanger (i,j,k)
ΔTcDi;j;k;n2 discrete point of temperature differences in cold side

of heat exchanger (i,j,k)
Γ large parameter in Big M constraints. It is usually slightly

larger than the maximum number of the variable for
which a zero-one variable is created.

NSpliti number of branches of hot stream i
TSpliti number of times hot stream i splits
TMMaxi;j;k maximum difference of temperatures allowed in

a mixer
DTi;j;k logarithmic mean temperature differences
D̂i;j;k;l discretized values of the logarithmic mean temperature

differences
TQD discrete point of the partitioned total utility usage
TAD discrete point of the partitioned total area
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dFThi;j;k
l1 discrete point of the partitioned FThi;j;kl1

dFTci;j;kl2 discrete point of the partitioned FTci;j;kl2

df thi;j;jjk;kk discrete point of the partitioned f thi;j;jj
k;kk

df tci;j;jjk;kk discrete point of the partitioned f tci;j;jjk;kk
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