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Abstract

In this article, the design and retrofit problem of a supply chain (SC) consisting of several production plants, warehouses and markets,
and the associated distribution systems, is considered. The first problem formulation modifies and extends other previously presented
models, in order to include several essential characteristics for realistically representing the consequences of design decisions on the SC
performance. Then, in order to take into account the effects of the uncertainty in the production scenario, a two-stage stochastic model is
constructed. The problem objective, i.e., SC performance, is assessed by taking into account not only the profit over the time horizon, but
also the resulting demand satisfaction. This approach can be used to obtain different kinds of solutions, that may be valuable at different
levels. On one hand, the SC configurations obtained by means of deterministic mathematical programming can be compared with those
determined by different stochastic scenarios representing different approaches to face uncertainty. Additionally, this approach enables to
consider and manage the financial risk associated to the different design options, resulting in a set of Pareto optimal solutions that can be
used for decision-making.
� 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

The concept of Supply Chain Management (SCM), which
appeared in the early 90s, has recently raised a lot of in-
terest since the opportunity of an integrated management of
the supply chain (SC) can reduce the propagation of unex-
pected/undesirable events through the network and can af-
fect decisively the profitability of all the members. SCM
looks for the integration of a plant with its suppliers and its
customers to be managed as a whole, and the co-ordination
of all the input/output flows (materials, information and fi-
nances) so that products are produced and distributed at
the right quantities, to the right locations, and at the right
time (Simchi-Levi et al., 2000). The main objective is to
achieve suitable economic results together with the desired
consumer satisfaction levels. The SCM problem may be
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considered at different levels depending on the planning
horizon and the detail of the analysis: strategic, tactical
and operational (Fox et al., 2000). In this work, the SC
design problem is addressed, thus strategic decisions are
considered.
A lot of attempts have been made to model and opti-

mise the SC behaviour, currently existing a big amount of
deterministic (Bok et al., 2000; Timpe and Kallrath, 2000;
Gjerdrum et al., 2000) and stochastic derived approaches.
Since the nature of most SCs is characterised by numer-

ous sources of technical and commercial uncertainty, the
consideration of all the model parameters, such as cost co-
efficients, production rates, demand, etc., as being known is
not realistic. Several works deal with uncertainty in SCM
at different levels. One part of the effort has been oriented
through control theory in which the uncertainty is modelled
as disturbances arriving to a dynamic model of the system.
The work byBose and Pekny (2000)looks for the inven-
tory set points that ensure a desired customer service level
with a planning tool, and then track them with a model
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predictive control (MPC) approach. Similarly,Perea-López
et al. (2003)determine the optimal variables that maximise
the profit of the system, by optimising a multiperiod mixed-
integer linear programming (MILP) problem, and using a
rolling horizon MPC approach so as to include the distur-
bance influence. All these approaches work at an operational
level.
Other approaches are able to cope with the uncertainty

through fuzzy programming (Sakawa et al., 2001) at strate-
gic level. Their limitations are related to the simplicity of
the production–distribution models usually used.
A third group, the biggest one, includes statistical

analysis-based methods in which it is assumed that the un-
certain variable follows a particular probability distribution.
As in this article, most works apply anadapter strategy
in which the SC controls the risk exposure of its assets
by constantly adapting its operations to unfolding demand
realisations. In the strategy known asshaper, in turns, the
SC aims to restructure the demand distribution contract-
ing agreements with the customer (Anupindi and Bassok,
1999).
Into the last group, the most popular approach is the

two-stage decision process. Applications differ primarily
in the selection of the decision variables and the way in
which the expected value term, which involves a multi-
dimensional integral accounting for the probability
distribution of the uncertain parameters, is computed. The
difficulty of continuous distributions is avoided by in-
troducing discrete scenarios, or combinations of discrete
samples of all the uncertain parameters (Cohen and Lee,
1989; Subrahmanyam, 1996; Iyer and Grossmann, 1998;
Tsiakis et al., 2001). Pistikopoulos and co-workers (Acevedo
and Pistikopoulos, 1998; Bernardo et al., 1999) have ex-
amined alternative strategies for evaluating the integral
term, ranging from cubature methods to sampling methods.
Maranas and collaborators (Petkov and Maranas, 1997;
Gupta and Maranas, 2000, 2003) convert stochastic features
of the problem into a chance-constrained programming
problem. Finally, a different approach at strategic level
is the work ofApplequist et al. (2000), who presented a
method for evaluating SC projects with the capability of
assessing the integral values based upon polytope volumes.
Literature reveals that the most important and extensively

studied source of uncertainty has been demand (Gupta and
Maranas,2000,2003;PetkovandMaranas,1997; Ierapetritou
and Pistikopoulos, 1996; Ahmed and Sahinidis, 1998). The
emphasis on incorporating demand uncertainty into the plan-
ning decisions is appropriate given the fact that effectively
meeting customer demand is what mainly drives most SC
planning initiatives.
In traditional SCM, minimising costs or maximising profit

as a single objective is often the optimisation focus (Cohen
and Lee, 1989; Tsiakis et al., 2001). Moreover, the ability of
responding to customer requirements turns out to be one of
the most basic functions of the SCM. Thus, customer service
should also be taken into consideration when formulating

a SC model (Chen et al., 2003) even if it is difficult to
quantify as a monetary amount in the objective function.
Usually, designs with higher profit will perform better for
lower values of customer satisfaction, so they tend to be
contradictory objectives. Therefore, it is proposed to set up
a multiobjective design problem whose solution will be a set
of Pareto optimal possible design alternatives representing
the trade-off among the different objectives rather than a
unique solution.
Manymethodologies have been proposed for treatingmul-

tiobjective optimisation problems (Miettinen, 1999). Among
them, the weighted-sum method, the�-constraint method,
and the goal-programming method, which are based on the
conversion of the vector of objectives into a scalar objec-
tive (Azapagic and Clift, 1999; Zhou et al., 2000; Chen
et al., 2003), are the most widely used in process engineer-
ing. Because the optimisation of a multiobjective problem
is a procedure looking for a compromise policy, the result-
ing Pareto-optimal or noninferior solution set consists of an
infinite number of options. In order to be able to suggest a
specific point of this set, some attempts have been made to
compare the objectives between them, for example optimis-
ing a Nash-type function (Gjerdrum et al., 2001), defining
the objectives as fuzzy sets (Chen et al., 2003) or adding
the consideration of the decision-maker input in the problem
formulationRodera et al. (2002).
The present work formulates the SC design problem as

a multiobjective stochastic MILP model, which is solved
by using the standard�-constraint method, and branch and
bound techniques. This formulation takes into account not
only SC profit and customer satisfaction level, but also un-
certainty by means of the concept of financial risk, which
is defined as the probability of not meeting a certain profit
aspiration level (Barbaro and Bagajewicz, 2004).

2. Problem statement

According to the approach previously outlined, the pro-
posedmodel helps to determine the design of the usual three-
echelon SC (production-storage-market) accounting for the
maximisation of three objectives (the net present value, the
demand satisfaction and the financial risk) and taking into
account the decision-maker preferences. Decisions to be de-
cided include the capacity and location of the plants and
warehouses, the amount of products to be made at each
plant,and the flows of materials between each two nodes of
the SC. The structure of the aforementioned SC is depicted
in Fig. 1. It includes the following elements:

• a set of plants where products are manufactured prior to
be sent to the warehouses;

• a set of warehouses where products are stored before being
transported to the final markets;

• a set of final markets where products are available to cus-
tomers.
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Plants Warehouses Markets

Fig. 1. Supply chain structure.

The overall problem can be formally stated as follows:
Given

• number and length of time intervals;
• demand data for each productp, marketk, time intervalt
and scenarios (Dempkts);

• prices of each product at each market, in each time interval
(pricepkt );

• interest rate (ir) and salvage value (SV);
• capacity data of the nodes of the SC such as capacity
factors of products in each planti and each warehouse
j (�pi and �pj , respectively), maximum and minimum
allowable capacities of plants and warehouses (PCapL

i ,
PCapUi , WHCapLj and WHCapUj ) and turnover ratios of
warehouses (�j );

• taxes data such as taxes rate (tr) and number of deprecia-
tion time intervals (nd);

• relationship between indirect expenses and capacities of
plants and warehouses (IEL

P i , �P i , IE
L
WHj and�WHj );

• relationship between fixed capital investment and capac-
ities of plants and warehouses (FCIL

P i , �P i , FCI
L
WHj and

�WHj );
• direct cost parameters such as unit production (VCpi),
transport (TC1pij , TC2pjk), handling (HCpj ) and inven-
tory (ICpj ) costs;

Find

• The configuration of the SC that maximises the net present
value (NPV) and the demand satisfaction, and minimises
the financial risk:
◦ Number, locations and capacities of plants and ware-
houses to be set;

◦ Production rates of each product at each plant, for all
the time intervals and scenarios (Qpits);

◦ Flows of materials between the plants and warehouses
(Xpijts) and between the warehouses and the markets
(Ypjkts).

The result of the model provides a set of Pareto solutions to
be used by the decision-maker in order to find the best SC
configuration according to her/his preferences.

3. Multiobjective stochastic model

A stochastic programming approach based on a recourse
model with two stages is proposed in this work to incorporate
the uncertainty associated to the demand within the design
process.
In a two-stage stochastic optimisation approach, the un-

certain model parameters are considered random variables
with an associated probability distribution and the decision
variables are classified into two stages. The first-stage vari-
ables correspond to those decisions that need to be made
here-and-now, prior to the realisation of the uncertainty. The
second-stage or recourse variables correspond to those deci-
sions made after the uncertainty is unveiled and are usually
referred to as wait-and-see decisions.After the first-stage de-
cisions are taken and the random events realised, the second-
stage decisions are made subject to the restrictions imposed
by the second-stage problem. Due to the stochastic nature of
the performance associated with the second-stage decisions,
the objective function consists of the sum of the first-stage
performance measure and the expected second-stage perfor-
mance. More details on stochastic techniques can be found
in Birge and Louveaux (1997).
In our problem, the uncertainty associated to the demand

is represented by a set of scenarios with given probability
of occurrence. Such scenarios together with their asso-
ciated probabilities must be provided as input data into
the model. In case the demand follows a specific type
of probability distribution, this can be discretised using
Monte Carlo sampling, thus generating a set of explicit
scenarios.
Moreover, decision variables which characterise the net-

work configuration, namely those binary variables which
represent the existence of the different nodes of the SC and
the continuous ones which are related to the capacities of
the sites, are considered as first-stage variables as it is as-
sumed that they have to be taken at the design stage before
the demand uncertainty is unveiled.
On the other hand, decision variables related to the amount

of products to be produced and stored in the nodes of the
SC, the flows of materials transported among the entities of
the network and the product sales are considered as second-
stage variables.
At the end of the design horizon, a different value of NPV

and demand satisfaction is obtained for each particular reali-
sation of demand uncertainty. The proposed model accounts
for the maximisation of the expected value of the profit dis-
tribution, the target imposed for the customer satisfaction
and the financial risk. The mathematical formulation of such
model is next described.
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3.1. Mass balance constraints

The mass balance must be satisfied in each of the sites
embedded in the SC. Therefore, for each planti the total
amount of productpmanufactured during time intervalt in
scenarios (Qpits) must be transported fromi to warehouses
j as stated by Eq. (1), in whichXpijts represents the flow of
p sent byi to j in t ands.

Qpits =
∑
j

Xpijts ∀p, i, t, s. (1)

With regard to the warehouses, for each time intervalt and
scenarios, the total amount of productp sent by planti to
warehousej (Xpijts) plus the initial stock ofp kept atj at the
beginning oft (Invpjt−1s) must be equal to the amount ofp
transported fromj to final marketsk (Ypjkts) plus the final
inventory ofp in j (Invpjts), as expressed by constraint (2):
∑

i

Xpij ts + Invpjt−1s =
∑

k

Ypjkts + Invpjts

∀p, j, t, s. (2)

Moreover, it is considered that in the first period of time
(t = 1), when the construction of the different sites of the
SC is supposed to take place, the flows of materials between
nodes are equal to zero as stated by constraint (3):

Qpits = 0, Xpijts = 0, Ypjkts = 0

∀p, i, j, k, t = 1, s. (3)

Finally, the sales of productp carried out in marketk during
time interval t in scenarios (Ypjkts) must be less than or
equal to the demand (Dempkts) of this product at this market
(4):∑
j

Ypjkts �Dempkts ∀p, k, t, s. (4)

3.2. Capacity constraints

The capacity of each planti is represented by a continuous
variable (PCapi), whichmust be higher than the total amount
of productspmanufactured ati for every time intervalt and
scenarios as stated by Eq. (5). The parameter�pi used in
this expression weighs the amount of resources consumed
by each productp at i.∑
p

Qpits�pi �PCapi ∀i, t, s. (5)

Furthermore, PCapi is constrained by upper and lower
bounds (PCapLi and PCapUi ) in case the plant is finally set
as stated by Eq. (6). In this equation,Ai is a binary variable
which takes the value of 1 in case the plant is opened and
0 otherwise. As can be observed, if the plant is not set, it
cannot manufacture any product as its capacity is forced to
take a value equal to zero:

PCapLi Ai �PCapi �PCapUi Ai ∀i. (6)

As occurs with the plants, it is defined a continuous vari-
able in order to represent the capacity of the warehouses
(WHCapj ). Therefore, the total inventory ofp kept at ware-
housej during time intervalt in scenarios (Invpjts) must
be lower than the capacity of the warehouse as stated by
Eq. (7), where�pj is a coefficient that weighs the storage
resources consumed by each productp at j:
∑
p

Invpjts�pj �WHCapj ∀j, t, s. (7)

Moreover, the total flow of materials sent by warehousej
to the final marketk is also constrained by the variable
WHCapj as expressed by Eq. (8). In such expression, it is
supposed that for each time intervalt, scenarios and ware-
housej, the capacity needed to handled a given amount of
products, assuming regular shipment and delivery schedule,
is twice the summation of the average inventory levels of
productsp (AIL pjts) kept atj weighed by the storage coef-
ficients�pj (Simchi-Levi et al., 2000):

2
∑
p

AIL pjts�pj �WHCapj ∀p, j, t, s. (8)

AIL pjts is computed by means of Eq. (9), in which�j rep-
resents the turnover ratio of the warehousej, i.e., the num-
ber of times that the stock is completely replaced per time
interval:

AIL pjts =
∑

kYpjkts

�j

∀p, j, t, s. (9)

Finally, the capacity of the warehousej is constrained by
lower and upper bounds (WHCapL

j and WHCapUj ) in case
the warehouse is finally set, as stated by Eq. (10). The binary
variableBj used in this expression represents the existence
of a warehousej and takes the value of 1 in casej is opened
and 0 otherwise.

WHCapLj Bj �WHCapj �WHCapUj Bj ∀j. (10)

3.3. Objective function

The production/distribution systemwhosemodel has been
described before must attain three targets:

• maximise the NPV;
• maximise the demand satisfaction, which in turn may
bring future sales;

• minimise the financial risk.

3.3.1. Net present value
As it has been mentioned before, different NPV values are

obtained for each scenario under study (NPVs) once the un-
certainty is unveiled. The model described before must ac-
count for the maximisation of the expected value (E[NPV])
of the resulting NPV distribution, which can be computed
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by performing an average of the aforementioned NPVs as
stated by Eq. (11):

E[NPV] =
∑

s

probs NPVs . (11)

The values of NPVs must be determined according to ap-
plicable rules (depreciation), legislation (taxes), etc., so this
may lead to different formulations. The following equations
intend to reflect a general case:
Having in mind such purpose, NPVs is calculated for each

scenarios as the summation of the discounted cash flows
(CFts) generated in each of the time intervalst in which the
time horizon is divided as expressed by Eq. (12):

NPVs =
∑

t

CFts

(1+ ir)t−1 ∀s. (12)

With regard to the cash flows, these are computed for each
scenarios and time intervalt as the difference between the
revenues (Revts) and the total costs. Such costs include the
direct (DEts) and indirect expenses (IEt ) as well as the taxes
(Taxts) originated by all the production, distribution and
storage activities performed in the day to day SC operation.
Moreover, it is supposed that the necessary capital invest-
ment (CI) for carrying out the construction of the SC takes
place in the first period of time, while the working capital
(WC), which is part of this initial investment, and the sal-
vage value of the SC (SV) are recovered in the last time
interval as indicated by Eqs. (13)–(15):

CFts = −CI = −(FCI+WC) ∀s, t = 1, (13)

CFts = −Revts − DEts − IEt − Taxts
∀s,1< t < T, (14)

CFts = −Revts − DEts − IEt − Taxts +WC+ SV

∀s, t = T . (15)

The total capital investment (CI) is calculated by adding
the fixed capital investment (FCI) and the working capital
(WC). The first term includes the cost of setting the plants
and warehouses embedded in the SC and is a linear function
of their capacities (16).

FCI=
∑

i

(FCILP iAi + PCapi�P i)

+
∑
j

(FCILWHjBj +WHCapj�WHj ). (16)

On the other hand, the working capital (WC), which rep-
resents the initial amount of money that is necessary in or-
der to start the production and distribution activities in the
network, is supposed to be directly proportional to FCI as
expressed by constraint (17). In such equation, the propor-
tionality constant� is considered to be equal to� = 0.194
(Biegler et al., 1997):

WC= �FCI. (17)

The revenues obtained in each time intervalt and scenario
s are proportional to the sales of productsp at marketsk
(Salespkts) and their associated prices (Pricepkt ) as stated
by Eqs. (18) and (19):

Revts =
∑
pk

Salespkts Pricepkt ∀t, s, (18)

Salespkts =
∑
j

Ypjkts ∀p, k, t, s. (19)

Regarding the indirect expenses generated in each time in-
terval t (IEt ), it is considered that these are proportional
to the capacities of the plants/warehouses, as expressed by
constraint (20).

IEt =
∑

i

(IEL
P iAi + PCapi�P i)

+
∑
j

(IEL
WHjBj +WHCapj�WHj ) ∀t. (20)

It should be mentioned that this term is computed directly
from the first-stage variables (SC configuration) and with-
out evaluating second-stage decisions, and therefore remains
constant for all the scenarios under study once the uncer-
tainty is unveiled.
The direct expenses obtained in time intervalt and sce-

nario s (DEts) are proportional to the amount of products
manufactured, stored and transported through the different
nodes of the SC, as stated by Eq. (21). Such costs include,
therefore, the following terms:

• Variable production costs at the plants, which are assumed
to be equal to the production rates of productsp manu-
factured at plantsi in each time intervalt and scenarios
(Qpits) multiplied by the unit production costs (VCpi).

• Handling costs at the warehouses, which in this case are
assumed to be equal to the flows of productsp sent by
warehousesj to marketsk in time intervalt and scenario
s (Ypjkts) multiplied by the unit handling costs (HCpj ).

• Transport costs, which are supposed to be equal to the
flows of materials transported between plants and ware-
houses (Xpijts) and warehouses and markets (Ypjkts) in
each scenarios and time intervalt multiplied by the unit
transport costs (TC1pij and TC2pjk, respectively).

• Inventory-holding costs at the warehouses, which are sup-
posed to be equal to the average inventory levels of product
p kept at warehousej in each scenarios and time interval
t (AIL pjts) multiplied by the unit inventory costs (ICpj ).

DEts =
∑
pi

QpitsVCpi +
∑
pjk

YpjktsHCpj

+
∑
pij

XpijtsTC1pij +
∑
pjk

YpjktsTC2pjk

+
∑
pjk

Ypjkts

�j

ICpj ∀t, s. (21)
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Finally, the taxes to be paid in each time intervalt and sce-
narios (Taxts) are computed assuming a linear depreciation
policy as stated by constraints (22)–(24). In these equations,
tr represents the taxes rate to be applied on the gross ben-
efit, and nd the number of time periods through which the
depreciation will be carried out:

Taxts = (Revts − Dept )tr ∀1< t �nd+ 1, s, (22)

Taxts = Revts tr ∀nd+ 1< t �T , s, (23)

Dept = FCI− SV

nd
∀t. (24)

3.3.2. Demand satisfaction
Customer demand satisfaction for each time intervalt and

scenarios (DSatts) is measured as the average of the not
covered demand (25):

DSatts =
∑

pk Salespkts∑
pk Dempkts

∀t >1, s. (25)

As occurred with the NPV, it is possible to compute the
expected value of the demand satisfaction by performing an
average of the values of DSatts for all the scenarioss and
time intervalst as expressed by constraint (26):

E[DSat] =
∑T

t=2
∑

s probsDsatts
T − 1

. (26)

The SC design problem, without considering the financial
risk, would be therefore mathematically formulated as fol-
lows:

maximise{E[NPV]; E[DSat]}
subject to

Eqs.(1).(26).

The main drawback of such mathematical formulation lies
on the fact that it does not reflect a realistic operational pol-
icy in terms of the demand satisfaction level to be achieved
by the SC. If the expected value of the demand satisfaction
is pursued as objective, the resulting Pareto optimal SC con-
figurations may exhibit in some scenarios and time intervals
demand satisfaction levels under the average while in oth-
ers may exceed it. This means that the operational strategy
of the SC towards the demand satisfaction will depend on
the scenario that finally materialises, as well as the time in-
terval considered, which does not seem desirable from the
decision-maker’s perspective.
In order to overcome such difficulty and explicitly take

into account the demand satisfaction strategy of the enter-
prise, aminimum targetfor the demand satisfaction (MD-
Sat), which must be attained in all the time intervals and
scenarios, is incorporated as an objective within the existing
formulation, thus avoiding the use of theE[DSat]. This new

issue leads to the following model:

maximise{E[NPV]; MDSat}
subject to

Eqs. (1).(25),

where

MDSat�
∑

pk Salespkts∑
pk Dempkts

∀t >1, s. (27)

Therefore, by selecting a certain value for MDSat, it is guar-
anteed that for each scenariosand time intervalt >1 at least
the minimum desired demand satisfaction level is reached.
The formulation described above is thus able to reflect the
operational policy that consists in obtaining the actual max-
imum profit at each scenario and time interval while en-
suring that the demand satisfaction previously fixed is also
achieved in all of them.
Each SC configuration leads to two histograms, one for

the NPV and another one for the demand satisfaction, and
therefore exhibits anE[NPV] for a given operational policy
(MDSat). This value ofE[NPV] may change depending on
the demand satisfaction target imposed to the SC operation,
as will be discussed in the case study.

3.3.3. Financial risk
The financial risk associated with a design project under

uncertainty is defined as the probability of not meeting a cer-
tain target profit (maximisation) or cost (minimisation) level
referred to as� (Barbaro and Bagajewicz, 2004). For the
two-stage stochastic problem, the financial risk associated
with a designx and target profit� is therefore expressed by
the following probability:

Risk(x,�) = P(NPV(x) <�), (28)

where NPV(x) is the NPV after the uncertainty has been un-
veiled and a scenario realised. The definition of Risk(x,�)

can be rewritten with the help of binary variables as follows:

Risk(x,�) =
∑

s

probszs(x,�), (29)

wherezs is a new binary variable defined for each scenario
as follows:

zs(x,�) =
{
1 if NPVs <�,

0 otherwise.
(30)

In a discrete scenario case, financial risk is given by the
cumulative frequency obtained from the NPV histogram as
depicted inFig. 2. A more straightforward way of assessing
and understanding the trade-offs between risk and profit is
to use the cumulative risk curve as depicted inFig. 3.
A possible way of avoiding the use of binary variables

to determine the risk consists of reformulating the problem
without explicitly using this definition. For this purpose, the
use of the concept of downside risk, in the way introduced
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by Eppen et al. (1989), is applied. The DRisk(x,�) is cal-
culated with the help of the following constraints:

DRisk(x,�) =
∑

s

probs	s(x,�),

	s(x,�)�� − NPVs ∀s,

	s(x,�)�0 ∀s, (31)

where 	s is a continuous variable. The DRisk(x,�) can
be utilised to control financial risk at different NPV targets
by varying� from small values up to higher values and
obtaining a full spectrum of solutions to be used by the
decision-maker as a decision support tool.

4. Multiobjective problem

The resulting objective function which includes the three
objectives (NPV, demand satisfaction and financial risk) can

be finally expressed as follows:

maximise{E[NPV]; MDSat; −DRisk}. (32)

The solution of this problem consists of a set of Pareto op-
timal SC configurations. These are obtained in this work by
applying the�-constraint method, first introduced byHaimes
et al. (1971). Such method is based on the maximisation of
one objective function, and considering the other objectives
as constraints bounded by some allowable levels�0. Then,
the levels�0 may be altered to generate the entire Pareto-
optimal set. Therefore, the following single MILP optimisa-
tion formulation is applied to obtain the Pareto solutions:

maximiseE[NPV]
subject to

Eqs. (1).(24), (27) and (31),

MDSat��1,

DRisk(x,�)��2.

Therefore, by changing the values of the bound levels�1 and
�2, as well as the target�, a set of results can be obtained.
Each of these results implies an SC configuration. The re-
sulting Pareto solutions might be represented in a three-
dimensional chart (E[NPV], MDSat and DRisk(x,�)).
The methodology to solve the proposed problem is as

follows:

(1) Select a target for the downside risk calculation (�).
(2) Set initial targets for each objective (�1 and�2).
(3) Solve the proposed model.
(4) Obtain the corresponding Pareto solution.
(5) Choose a configuration from the Pareto set.

If the decision-maker is satisfied with the design then stop.
Otherwise go to step 1.
The proposed strategy should lead to a final SC design

which would represent the desired compromise among the
different objectives from the decision-maker’s perspective.
Regarding financial risk, it is also important to point out
that this term can be managed by changing both, the target
associated to the downside risk itself (�2) and the aspiration
level for which such term is computed (�).

5. A motivating example

In order to illustrate the capabilities of the proposed
model, a hypothetical case study has been studied. The prob-
lem consists of finding the optimal retrofit of an existing SC
established in Europe in terms of economic (NPV), demand
satisfaction (MDSat) and risk (DRisk(x,�)) performance.
The information available to carry out such task includes
the cost data concerning the production and distribution
activities of the network and the probability distribution of
the uncertain demand. The optimal redesign must include
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Fig. 4. Case study.

the number, location and capacities of the new plants and
warehouses to be established, as well as the new capacities
of the existing sites in case these should be modified.
The structure of the case study is indicated inFig. 4. It is

assumed that the existing plants and warehouses, which are
located in Barcelona and Milan, are forced to remain opened
in the future and only their capacities can be increased in case
this would be necessary (the model would therefore provide
the additional capacities to be added to these new nodes
with respect to the original one). The original capacities of
the plants in Barcelona and Milan are equal to 200,000 and
80,000 kg, respectively, and 160,000 and 60,000 kg for the
warehouses, in the same order.
Four potential location candidates distributed among East

Europe countries are provided for plants and five for ware-
houses. All the required information related to the plants
is shown inTables 1–4, while all the data concerning the
warehouses are given inTables 5–9. The original network
manufactures three different products (P1, P2 and P3) which
are delivered to 11 final markets.Tables 10–15. present the
transport costs. The mean demand (MDempkt ) as well as
the prices of the products for the first time interval are listed
in Table 16With regard to the demand of future time in-
tervals, it is assumed that it remains constant in Valencia
(V), increases by 2.5% per year in Barcelona (Ba), Bristol

Table 1
Lower and upper capacity bounds of plantsi (PCapL

i
and PCapU

i
)

Plant PCapL
i

PCapU
i

location (kg) (kg)

Ba 0 50,000,000
Mi 0 50,000,000
Br 0 50,000,000
Mo 0 50,000,000
Bu 0 50,000,000
W 0 50,000,000

(B), Manchester (M), London (L), Milan (Mi) and Berlin
(Be) and by 10% per year in Bratislava (Br), Warsaw (W)
Bucharest (Bu), and Moscow (Mo). On the other hand, it is
also considered that prices of products remain constant for
the whole time horizon. The tax rate and the discount rate
are assumed to be equal to 30% and 10%, respectively, and
the salvage value of the SC is supposed to be a 10% of the
FCI. The time horizon is divided into ten time intervals and
depreciation takes place in the first seven periods of time.
Finally, it is assumed that the flows of materials associated
to the existing sites (plants and warehouses located in B and
Mi) are not forced to be equal to zero for the first time in-
terval. This issue is considered in the determination of the
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Table 2
Production capacity factors of productsp at plantsi (�pi (adim))

Product Plant location

Ba Mi Br Mo Bu W

P1 1.5 1.5 1.5 1.5 1.5 1.5
P2 1.3 1.3 1.3 1.3 1.3 1.3
P3 1.0 1.0 1.0 1.0 1.0 1.0

Table 3
Variable production costs of productsp at plantsi (VCpi (m.u./kg))

Product Plant location

Ba Mi Br Mo Bu W

P1 30 40 25 20 15 25
P2 22 30 19 15 11 19
P3 15 20 13 10 8 13

Table 4
Fixed capital investment and indirect expenses parameters of plantsi
(FCIL

P i
, �P i , IE

L
P i

and�P i )

Plant FCIL
P i

(m.u.) �P i IEL
P i

(m.u.) �P i

location (m.u./kg) (m.u./kg)

Ba 200,000 10 600,000 10
Mi 100,000 10 800,000 10
Br 500,000 10 500,000 10
Mo 800,000 10 400,000 10
Bu 300,000 10 300,000 10
W 500,000 10 500,000 10

Table 5
Lower and upper capacity bounds and turnover ratios of warehousesj
(WHCapL

j
, WHCapU

j
and�j )

Warehouse WHCapL
j

WHCapU
j

�j

location (kg) (kg) (adim)

Ba 0 50,000,000 4
D 0 50,000,000 4
Mi 0 50,000,000 4
Br 0 50,000,000 4
Mo 0 50,000,000 4
Bu 0 50,000,000 4
W 0 50,000,000 4

cash flow of the first time interval, where the production,
storage and distribution activities carried out by the existing
nodes are also considered together with the capital invest-
ment term. Finally, it is assumed that the indirect expenses
of the existing SC are equal to 3,500,000 monetary units
(m.u.).

5.1. The deterministic Pareto optimal solutions

In first place, the model is solved as a deterministic case,
which means that the behavior of the demand for each time
interval and market is assumed to be perfectly known and
therefore only one scenario with mean demand values is
considered (Table16).
The resulting mathematical formulation has 1128 single

equations, 4010 continuous variables and 13 binary vari-
ables, and it is implemented in GAMS (Brooke et al., 1988)
and solved using the MILP solver of CPLEX 7.0. The time
required to obtain solutions with 0% integrality gap on an
AMD Athlon 3000 computer ranges from 0.3 to 0.6 s (de-
pending on the target imposed to the demand satisfaction).
When the deterministic case is solved without constrain-

ing the value of demand satisfaction, the result of the model
leads to a solution with MDSat= 36.3%, i.e., the best eco-
nomic performance is reached, satisfying customer demand
up to a certain level. In other words, only above such value
of demand satisfaction level some trade-off between the ob-
jectives exists and below it the solution is the same as that
of the model without constraining demand satisfaction.
The Pareto deterministic optimal curve is next obtained

by maximising the NPV and progressively constraining the
MDSat. Therefore, each point of this Pareto curve implies a
SC design operating under a demand satisfaction policy rep-
resented by the target�1 imposed to the optimisation prob-
lem.Fig. 5shows the aforementioned Pareto curve while in
Fig. 6 three SC configurations (locations and capacities ex-
pressed in kg) which correspond to different points of the
curve (MDSat= 40%, 60% and 80%) are given. It is inter-
esting to notice how the number of plants and warehouses
established as well as their capacities increase as more de-
mand satisfaction is requested. For instance, the solution
with a MDSat= 40% implies the set-up of two new nodes
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Table 6
Storage capacity factors of productsp at warehousesj (�pj (adim))

Product Warehouse location

Ba D Mi Br Mo Bu W

P1 1.5 1.5 1.5 1.5 1.5 1.5 1.5
P2 1.3 1.3 1.3 1.3 1.3 1.3 1.3
P3 1.0 1.0 1.0 1.0 1.0 1.0 1.0

Table 7
Handling costs of productsp at warehousesj (HCpj (m.u./kg))

Product Warehouse location

Ba D Mi Br Mo Bu W

P1 3.0 5.0 4.0 2.5 2.0 1.5 2.5
P2 2.5 3.8 3.0 1.9 1.5 1.1 1.9
P3 1.5 2.5 2.0 1.3 1.0 0.8 1.3

Table 8
Inventory costs of productsp at warehousesj (ICpj (m.u./kg year)

Product Warehouse location

Ba D Mi Br Mo Bu W

P1 3.0 5.0 4.0 2.5 2.0 1.5 2.5
P2 2.5 3.8 3.0 1.9 1.5 1.1 1.9
P3 1.5 2.5 2.0 1.3 1.0 0.8 1.3

Table 9
Fixed capital investment and indirect expenses parameters of warehousesj (FCIL

WHj
, �WHj , IE

L
WHj

and�WHj )

Warehouse FCIL
WHj

(m.u.) �WHj IEL
WHj

(m.u) �WHj

location (m.u./kg) (m.u./kg)

Ba 20,000.0 10.0 60,000.0 2.5
D 400,000.0 10.0 90,000.0 2.5
Mi 10,000.0 10.0 80,000.0 2.5
Br 50,000.0 10.0 50,000.0 2.5
Mo 80,000.0 10.0 40,000.0 2.5
Bu 30,000.0 10.0 30,000.0 2.5
W 50,000.0 10.0 50,000.0 2.5

Table 10
Transport cost between plantsi and warehousesj for product P1 (TC1pij (m.u./kg))

Plant location Warehouse location

Ba D Mi Br Mo Bu W

Ba 0.0 12.9 9.7 18.3 35.9 25.9 23.3
Mi 9.8 10.7 0.0 8.7 27.6 16.3 15.1
Br 18.3 13.1 8.7 0.0 19.0 10.0 6.4
Mo 35.9 26.7 27.6 19.0 0.0 17.8 12.6
Bu 25.9 22.8 16.3 10 17.8 0.0 11.6
W 23.3 14.1 15.1 6.4 12.6 11.6 0.0
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Table 11
Transport cost between plantsi and warehousesj for product P2 (TC1pij (m.u./kg))

Plant location Warehouse location

Ba D Mi Br Mo Bu W

Ba 0.0 16.1 12.2 22.9 44.8 32.3 29.2
Mi 12.2 13.4 0.0 10.9 34.5 20.4 18.9
Br 22.9 16.3 10.9 0.0 23.7 12.4 8.1
Mo 44.8 33.3 34.5 23.7 0.0 22.3 15.8
Bu 32.3 28.5 20.4 12.4 22.3 0.0 14.5
W 29.2 17.6 18.9 8.1 15.8 14.5 0.0

Table 12
Transport cost between plantsi and warehousesj for product P3 (TC1pij (m.u./kg))

Plant location Warehouse location

Ba D Mi Br Mo Bu W

Ba 0.0 19.3 14.6 27.5 53.8 38.8 35.0
Mi 14.6 16.1 0.0 13.1 41.5 24.4 22.7
Br 27.5 19.6 13.1 0.0 28.5 14.9 9.7
Mo 53.8 40.0 41.5 28.5 0.0 26.8 18.9
Bu 38.8 34.2 24.4 14.9 26.8 0.0 17.4
W 35.0 21.1 22.7 9.7 18.9 17.4 0.0

Table 13
Transport cost between warehousesj and marketsk for product P1 (TC2pjk (m.u./kg))

Ware Market location

V Ba B M L Mi Be Br W Mo Bu

Ba 3.4 0.0 13.2 15.8 14 10 18.5 18.3 23.3 35.9 25.9
D 16 12.9 3.2 4.6 1.2 10.7 8.5 13.1 14.1 26.7 22.8
Mi 13.1 9.7 13.8 15.2 11.8 0.0 10.3 8.7 15.1 27.6 16.3
Br 21.7 18.3 17.0 18.4 15.0 8.7 6.6 0.0 6.4 19.0 9.95
Mo 39.2 35.9 30.6 26.9 28.7 27.6 18.6 19.0 12.6 0.0 17.8
Bu 29.2 25.9 26.7 28.1 24.7 16.3 16.5 10.0 11.6 17.8 0.0
W 26.7 23.3 18.0 14.3 16.1 15.1 5.9 6.4 0.0 12.6 11.6

Table 14
Transport cost between warehousesj and marketsk for product P2 (TC2pjk (m.u./kg))

Ware Market location

V Ba B M L Mi Be Br W Mo Bu

Ba 4.3 0.0 16.5 19.7 17.5 12.2 23.2 22.9 29.2 44.8 32.3
D 19.9 16.1 4.0 5.8 1.5 13.4 10.6 16.3 17.6 33.3 28.4
Mi 16.4 12.2 17.2 19.0 14.8 0.0 13 10.9 18.9 34.5 20.4
Br 27.1 22.9 21.3 23.0 18.8 10.9 8.2 0.0 8.1 23.7 12.4
Mo 49.0 44.8 38.3 33.6 35.8 34.5 23.2 23.7 15.8 0.0 22.3
Bu 36.6 32.3 33.4 35.1 30.9 20.4 20.6 12.4 14.5 22.3 0.0
W 33.4 29.2 22.5 17.9 20.1 18.9 7.4 8.1 0.0 15.8 14.5
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Table 15
Transport cost between warehousesj and marketsk for product P3 (TC2pjk (m.u./kg))

Ware Market location

V Ba B M L Mi Be Br W Mo Bu

Ba 5.2 0.0 19.8 23.7 21.0 14.6 27.8 27.5 35.0 53.8 38.8
D 23.9 19.3 4.8 6.9 1.9 16.1 12.7 19.6 21.1 40.0 34.1
Mi 19.6 14.6 20.7 22.8 17.7 0.0 15.5 13.1 22.7 41.5 24.4
Br 32.5 27.5 25.5 27.6 22.6 13.1 9.8 0.0 9.7 28.5 14.9
Mo 58.5 53.8 45.9 40.4 43.0 41.5 27.8 28.5 18.9 0.0 26.8
Bu 43.9 38.8 40.1 42.2 37.1 24.4 24.7 14.9 17.4 26.8 0.0
W 40.1 35.0 27.0 21.5 24.1 22.7 8.9 9.7 0.0 18.9 17.4

Table 16
Demand and prices of productsp at marketsk in the first time interval

Market Dempkt (kg) Pricepkt (m.u.)

P1 P2 P3 P1 P2 P3

V 10,000.0 5,000.0 5,000.0 73.8 65.0 53.1
Ba 60,000.0 20,000.0 20,000.0 73.8 65.0 53.1
B 5,000.0 7,500.0 2,500.0 57.5 50.6 41.4
M 10,000.0 15,000.0 5,000.0 57.5 50.6 41.4
L 10,000.0 50,000.0 15,000.0 57.5 50.6 41.4
Mi 75,000.0 25,000.0 25,000.0 47.5 41.8 34.2
Be 25,000.0 10,000.0 15,000.0 40 35.2 28.8
Br 20,000.0 2,500.0 2,500.0 27.5 24.2 19.8
W 50,000.0 30,000.0 10,000.0 28.8 25.3 20.7
Mo 75,000.0 25,000.0 50,000.0 47.5 41.8 34.2
Bu 50,000.0 10,000.0 10,000.0 21.3 18.7 15.3
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Fig. 5. Deterministic Pareto curve.

(one plant and one warehouse) while four and six new sites
are opened when MDSat is forced to be higher than 60%
and 80%, respectively.
It should also be mentioned that although each of the ob-

tained SC configurations is Pareto optimal for a certain value
of MDSat, they can operate under different demand satis-
faction policies, thus leading to dissimilar NPVs. Therefore,

it is possible to obtain for each SC design anotheroperative
Pareto curve by fixing the variables which represent the con-
figuration of the SC and solving the multiobjective problem
which accounts for the maximisation of the NPV and the
DSat. InFig. 5, the Pareto operative curves associated to the
same SC designs (MDSat= 40%,60% and 80%) are also
depicted. As it can be observed, there is a trade-off between
both objectives above a certain demand satisfaction level as
occurred with the general Pareto curve. Moreover, each op-
erative curve ends at a point that corresponds to the MD-
Sat level above which the SC design is not able to operate
due to the capacity constraints. It may occur that some SC
designs are able to operate for higher demand satisfaction
levels than those for which they were originally designed.
This can be achieved by manufacturing products with lower
unit capacity coefficients. It is worthwhile to mention that
the Pareto curve envelops all the particular operative Pareto
curves and touches them only at a certain demand satisfac-
tion level. At this level, the configuration is Pareto solution
of the global multiobjective optimisation problem.

5.2. Stochastic case

The same case study, with the same input parameters but
taking into account demand uncertainty, is next solved. In
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Fig. 6. Deterministic Pareto designs.

this work, the uncertainty associated to such parameter is
represented by 100 equiprobable scenarios. The scenarios
are generated as follows. In the first place, a Monte Carlo
sampling is performed over a set of normal probability dis-
tributions which describe the demand associated to product
P1 in each market and time interval. In the second place,
the demands of P2 and P3 are computed, assuming that the
rates between the demands of the different products equal
their corresponding deterministic counterparts for each mar-
ket and time interval. The standard deviations of all the prob-
ability distributions are supposed to be equal to 10% for all
the markets except for Mo, for which it is assumed to be
equal to 30%. In all the cases, the standard deviations in-
crease by 1% per time interval.
The resulting mathematical formulation has 109,946 sin-

gle equations, 398,129 continuous variables and 13 binary
variables, and is also implemented in GAMS (Brooke et al.,
1988) and solved using CPLEX 7.0. The time required to
obtain solutions with 0% integrality gap on a AMD Athlon
3000 computer ranges from 7200 to 28,800 s depending on
the target imposed to the customer satisfaction (note, how-
ever, that the major purpose of the work is to propose a SC
design framework rather than develop the best efficient solu-
tion algorithm). It is important to mention that the number of
binary variables in this case is the same as in the determin-
istic formulation, since they represent first-stage decisions
(SC configuration) which are not scenario dependant.

5.2.1. The stochastic Pareto optimal solutions
Fig. 7 shows the Pareto curve obtained for the stochastic

problem while inFig. 8 three SC configurations (location
and capacities of the different nodes expressed in kg) which
correspond to the different depicted points of the curve. As
occurred in the deterministic case, satisfying the demand is
profitable until a certain level MDSat= 27.8%. Above this
level, there is a trade-off between both objectives, since an
increment in the value of MDSat implies a decrease in the
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Fig. 7. Stochastic Pareto curve.

associatedE[NPV] as shown in the figure. As can be also
observed, solutions with higher MDSat imply networks with
larger capacities due to the need of covering more demand.
For instance, the design which corresponds to MDSat=40%
involves the establishment of two new nodes while four and
six new sites are set up when the demand satisfaction level
imposed is equal to 60% and 80%, respectively.
As occurred before in the deterministic case, the SC con-

figurations can operate under different demand satisfaction
policies once the uncertainty is unveiled thus leading to dif-
ferentE[NPV]s. Therefore, an operative stochastic Pareto
curve can be generated for each of these configurations by
fixing the design variables in the stochastic formulation and
maximising theE[NPV] for different targets of MDSat. The
operative Pareto curves corresponding to the configurations
with MDSat= 40%,60% and 80% have been depicted to-
gether with the global Pareto stochastic curve inFig. 7. It
can be observed how the last one wraps all the operative
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Fig. 8. Stochastic Pareto designs.
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Fig. 9. Risk curves of stochastic Pareto solutions.

stochastic Pareto curves of the Pareto designs and touches
them at one point for which they are Pareto optimal solu-
tions of the overall problem.
Moreover, Fig. 9 depicts the financial risk curves as-

sociated to the same points of the Pareto optimal curve
(MDSat= 40%,60% and 80%). It can be observed in such
a figure how the risk curves of the Pareto solutions move to
the left as they are forced to fulfil more demand. In other
words, SC designs with larger MDSat values exhibit lower
E[NPV]s and higher probabilities of lower profits. For in-
stance, for the curve with an MDSat= 40%, the probabil-
ity of obtaining an NPV lower than 0m.u. is equal to zero,
while such probability increases up to 100% for configura-
tions with MDSat= 70% and 100%.

5.3. Deterministic vs stochastic solutions

A comparison between the deterministic and the stochas-
tic solution is performed next, with the aim of measuring
the effect of not considering uncertainty in those situations
where the environment is actually uncertain. An example
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Fig. 10. Deterministic vs. stochastic Pareto solutions.

of this kind of mistakes may appear when a deterministic
model is used to solve problems which are affected by un-
certain parameters considering just mean values for such
parameters.
In order to perform the aforementioned comparison, the

SC designs obtained by solving the proposed multiobjec-
tive formulation for the mean scenario are evaluated against
the uncertain environment. Such evaluation is carried out as
follows.
In the first place, a demand satisfaction level is selected.

In the second place, for the selected MDSat, the correspond-
ing values of the design variables (location and capacities
of the different nodes of the SC) of the deterministic Pareto
solution computed for the mean value scenario are taken.
Finally, these variables are fixed as first-stage variables in
the stochastic model considering the set of 100 scenarios,
and the multiobjective stochastic formulation is next solved
accounting for the maximisation of theE[NPV] and con-
straining the MDSat to be higher than the MDSat target
for which the deterministic design was obtained. Such pro-
cedure allows to compute the values of the second-stage
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Fig. 12. Risk curves of the deterministic and stochastic Pareto designs
for MDSat= 40%.

variables for the given first-stage ones. The procedure is fi-
nally repeated until the entire set of deterministic Pareto so-
lutions is evaluated through the stochastic formulation. By
applying this procedure, it can be seen how almost all the de-
terministic SC configurations are not able to reach the MD-
Sat for which they were originally designed once the uncer-
tainty is unveiled. Moreover, inFig. 10, a curve that repre-
sents the deterministic SC configurations which manage to
keep the MDSats under the uncertain environment has been
plotted together with the Pareto stochastic curve. It can be
observed how although such designs guarantee the demand
satisfaction level previously imposed in the deterministic
formulation under all the scenarios, theirE[NPV]s are ap-
proximately 4–5% lower than those achieved by their corre-
sponding stochastic counterparts, i.e., the SC configurations
computed by means of the stochastic formulation consider-
ing the 100 scenarios and the same MDSat target. The CI
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Fig. 13. Comparison of the deterministic and stochastic Pareto designs
for MDSat= 40% under different operative policies.
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Fig. 14. Risk curves of the deterministic and stochastic Pareto designs
without constraining MDSat.

associated to the stochastic and deterministic designs are
also depicted inFig. 10. As can be observed, the CI values
associated to the SC configurations computed by means of
the stochastic formulation are higher than those correspond-
ing to their deterministic counterparts above MDSat=41%.
The stochastic formulation forces to chose SC configurations
with higher capacities which are able to reach the MDSat
for which they are designed under all the scenarios and not
only for the mean demand scenario that finally leads to SC
configurations with higher CI values.
In Fig. 11, the SC configuration calculated by means of

the stochastic formulation for MDSat= 40% is compared
with its deterministic analogue under all the scenarios. The
figure shows that there are many scenarios in which the
deterministic configuration yields higher benefits than the
stochastic one, although others result in larger losses,
which finally leads to a lowerE[NPV] (10,656,700m.u. for
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Fig. 15. Designs of the deterministic and stochastic Pareto designs without constraining MDSat.

the deterministic case and 11,146,620m.u. for the stochas-
tic one). This can be also observed in the NPV histograms
corresponding to both SC configurations (Fig.12). Not only
does the deterministic design exhibit lessE[NPV] but it
also presents higher probabilities of low profits as can be
seen in the figure. For instance, the deterministic design
exhibits a 14% probability of profits below 6× 106m.u.,
while the stochastic configuration yields a 7%. In addition,
in Fig. 13both designs are compared under different oper-
ational policies (MDSat). The associated operative Pareto
curves show how the stochastic design performs better than
the deterministic one for the entire range of demand sat-
isfaction levels. It is also interesting to point out that the
stochastic design is able to operate at most for a demand
satisfaction level equal to 42%, while the deterministic one
is only able to reach a MDSat= 41%.
Finally, the most profitable deterministic and stochastic

SC configurations, i.e., those computed by maximising NPV
and without constraining the MDSat for the mean scenario
and considering the set of 100 scenarios, have been com-
pared. InFig. 14, the histograms associated to both designs
are depicted. It can be observed how the stochastic design
implies less risk at lower profits. For instance, the proba-
bility of an NPV lower than 9× 106m.u. is equal to 7%
for the deterministic design and 1% for the stochastic one.
With regard to the SC configurations, which are also given in
Fig. 15, it can be observed that the stochastic design exhibits
lower capacities and it is thus able to cover less demand than
the deterministic one. Such conservative design, whose con-
sequences can be observed in the risk curves, tries to reduce
the impact of the high uncertainty associated to the market
of Moscow, which finally leads to a higherE[NPV] with re-
spect to its deterministic counterpart (11,242,919m.u. for the
deterministic SC and 11,836,501m.u. for the stochastic one).

5.4. Risk management

In this section, the financial risk has been considered.
The resulting multiobjective problem (maximiseE[NPV],
maximise MDSat and minimise DRisk) has been solved by
following the methodology described before.
Therefore, for a MDSat= 37%, it is aimed to reduce

the downside risk for a target� = 9 × 106m.u. while
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Fig. 16. Risk curves for MDSat= 37%.

maximising theE[NPV]. To achieve such goal, the model
is solved for different values of�2 (∞,6,500,2,000 and
250m.u.). In all these cases holding�1 = 37%. The result-
ing mathematical formulation has 110,046 single equations,
398,230 continuous variables and 13 binary variables, and
is also implemented in GAMS (Brooke et al., 1988) and
solved using CPLEX 7.0. The time required to obtain so-
lutions with 0% integrality gap on a AMD Athlon 3000
computer ranges from 7200 to 28,800 s depending on the
target imposed to the downside risk calculation. By apply-
ing the proposed methodology, different Pareto solutions
are obtained. The corresponding risk curves of such solu-
tions are depicted inFig. 16together with the deterministic
Pareto solution, i.e., the one obtained for the mean scenario
with MDSat= 37%.
As it can be observed, when the downside risk is con-

strained,E[NPV] is reduced (Fig.16), thus moving the fi-
nancial risk curves to the left at the top of the curve and
decreasing the probability of low NPVs. For instance, there
is a 7% probability of profits bellow 9× 106m.u. in the
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Fig. 17. Designs of the risk Pareto solutions for MDSat= 37%.

deterministic solution (DRisk= 72,762m.u.) and a 4% in
the stochastic one (DRisk=25,292m.u.), while such prob-
ability is reduced to 3%, 2%, and 1% in the solutions with
DRisk= 6500,2000 and 250m.u., respectively. These cu-
mulative probability curves clearly intersect, at least in one
point, the stochastic optimal curve computed without con-
straining the downside risk.
The SC configurations associated to each of the afore-

mentioned risk curves are also depicted inFig. 17. Such
designs show how in order to reduce the financial risk, the
formulation is forced to reduce the capacity of the plant and
warehouse located in the most uncertain market (Mo). This
strategy avoids low earnings but on the other hand it leads
to poorer chances of high benefits.

6. Conclusions

Determining the optimal SC configuration is a difficult
problem since a lot of factors and objectives must be taken
into account when designing the network. Therefore, the
multiobjective approach developed in this paper seems to
be the best way of capturing the high complexity of this
problem.
By using this methodology, the trade-off between the con-

sidered objectives (Pareto curve) can be obtained not only

for the nominal case, but also when there is uncertainty about
some of the parameters defining the production/distribution
scenario.
In this case, a Pareto stochastic curve can be obtained and

the comparison with the equivalent deterministic one has
demonstrated the convenience of using the stochastic for-
mulation. The effects of these uncertainty can be accounted
as a risk associated to the NPV of the investment, which has
been introduced as an additional objective into the model.
Then, this risk can be managed to reduce the probability of
having low earnings derived from the investment.
The interaction between the design objectives has been

shown. This way of generating different possible configura-
tions will help the decision-maker determine the best design
according to the selected objectives.

Notation

Ai binary variable (Ai =1 if i is opened,Ai =0
otherwise)

AIL pjts average inventory level ofp at j during t in s
Bj binary variable (Bj =1 if j is opened,Bj =0

otherwise)
CFts cash flow duringt in s
CI capital investment
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DEts direct expenses duringt in s
Dempkts demand ofp at k during t in s
Dept amount depreciated int
DRisk(x,�) downside risk associated with designx at

target level�
DSatts total demand satisfaction duringt in s
E[DSat] expected demand satisfaction
E[NPV] expected net present value
FCI fixed capital investment
FCILP i fixed cost parameter ati
FCILWHj fixed cost parameter atj
HCpj unit handling cost ofp at j
ir interest rate
ICpj unit inventory cost ofp at j
IEL

P i indirect expenses parameter ati
IEL

WHj indirect expenses parameter atj
IEt indirect expenses duringt
Invpjts amount ofp kept atj during t in s
MDempkt mean demand ofp at k during t
MDSat demand satisfaction
nd number of time intervals for depreciation
NPV net present value
NPVs net present value in s
PCapi capacity ofi
PCapLi lower capacity bound ofi
PCapUi upper capacity bound ofi
Pricepkt price ofp at k during t
probs probability ofs
Qpits amount ofp produced ati during t in s
Revts revenues in s duringt
Risk(x,�) risk associated with designxat target level�
Salespkts sales of productp at k in s duringt
SV salvage value
tr taxes rate
T number of time intervals in the time horizon
Taxts taxes in s duringt
TC1pij unit transport cost ofp betweeni and j
TC2pjk unit transport cost ofp betweenj andk
VCpi unit production cost ofp at i
WC working capital
WHCapj capacity ofj
WHCapLj lower capacity bound ofj
WHCapUj upper capacity bound ofj
x generic design variable
Xpijts amount ofp transported fromi to j during t

in s
Ypjkts amount ofp transported fromj to k during t

in s
zs binary variable (zs = 1 if NPVs <�, zs = 0

otherwise)

Greek letters

�pi production capacity factor ofp at i
�pj storage capacity factor ofp at j

�P i fixed cost coefficient ati
�WHj fixed cost coefficient atj
	s auxiliar variable for downside risk definition
�0 bound level for 0
�P i indirect expenses coefficient ati
�WHj indirect expenses coefficient atj
�j turnover inventory rate atj
� working capitalfactor
� aspiration target level of profit

Subscripts

i plants
j warehouses
k markets
o objectives
p products
s scenarios
t time intervals

Superscripts

L lower bound of the variables
U upper bound of the variables
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