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Abstract

In this article, the design and retrofit problem of a supply chain (SC) consisting of several production plants, warehouses and markets,
and the associated distribution systems, is considered. The first problem formulation modifies and extends other previously presented
models, in order to include several essential characteristics for realistically representing the consequences of design decisions on the SC
performance. Then, in order to take into account the effects of the uncertainty in the production scenario, a two-stage stochastic model is
constructed. The problem objective, i.e., SC performance, is assessed by taking into account not only the profit over the time horizon, but
also the resulting demand satisfaction. This approach can be used to obtain different kinds of solutions, that may be valuable at different
levels. On one hand, the SC configurations obtained by means of deterministic mathematical programming can be compared with those
determined by different stochastic scenarios representing different approaches to face uncertainty. Additionally, this approach enables to
consider and manage the financial risk associated to the different design options, resulting in a set of Pareto optimal solutions that can be
used for decision-making.
© 2004 Elsevier Ltd. All rights reserved.
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1. Introduction considered at different levels depending on the planning
horizon and the detail of the analysis: strategic, tactical
The concept of Supply Chain Management (SCM), which and operationalKox et al., 200Q In this work, the SC
appeared in the early 90s, has recently raised a lot of in-design problem is addressed, thus strategic decisions are
terest since the opportunity of an integrated management ofconsidered.
the supply chain (SC) can reduce the propagation of unex- A lot of attempts have been made to model and opti-
pected/undesirable events through the network and can afmise the SC behaviour, currently existing a big amount of
fect decisively the profitability of all the members. SCM deterministic Bok et al., 2000; Timpe and Kallrath, 2000;
looks for the integration of a plant with its suppliers and its Gjerdrum et al., 2000and stochastic derived approaches.
customers to be managed as a whole, and the co-ordination Since the nature of most SCs is characterised by numer-
of all the input/output flows (materials, information and fi- 0Ous sources of technical and commercial uncertainty, the
nances) so that productg are produced and distributed aponsideration of all the model parameters, such as cost co-
the right quantities, to the right locations, and at the right efficients, production rates, demand, etc., as being known is
time (Simchi-Levi et al., 2000 The main objective is to ~ Not realistic. Several works deal with uncertainty in SCM
achieve suitable economic results together with the desiredat different levels. One part of the effort has been oriented

consumer satisfaction levels. The SCM problem may be through control theory in which the uncertainty is modelled
as disturbances arriving to a dynamic model of the system.

The work byBose and Pekny (2000poks for the inven-
* Corresponding author. Tel.: +34934016678; fax: +34934017150, (OFY Set points that ensure a desired customer service level
E-mail address-Luis.Puigjaner@upc.ed.. Puigjaner). with a planning tool, and then track them with a model
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predictive control (MPC) approach. Similarlferea-Lépez  a SC model Chen et al., 200B8even if it is difficult to
et al. (2003)determine the optimal variables that maximise quantify as a monetary amount in the objective function.
the profit of the system, by optimising a multiperiod mixed- Usually, designs with higher profit will perform better for
integer linear programming (MILP) problem, and using a lower values of customer satisfaction, so they tend to be
rolling horizon MPC approach so as to include the distur- contradictory objectives. Therefore, it is proposed to set up
bance influence. All these approaches work at an operationala multiobjective design problem whose solution will be a set
level. of Pareto optimal possible design alternatives representing
Other approaches are able to cope with the uncertaintythe trade-off among the different objectives rather than a
through fuzzy programmingS@kawa et al., 20Qat strate- unique solution.
gic level. Their limitations are related to the simplicity of Many methodologies have been proposed for treating mul-
the production—distribution models usually used. tiobjective optimisation problem$/iettinen, 1999. Among
A third group, the biggest one, includes statistical them, the weighted-sum method, theonstraint method,
analysis-based methods in which it is assumed that the un-and the goal-programming method, which are based on the
certain variable follows a particular probability distribution. conversion of the vector of objectives into a scalar objec-
As in this article, most works apply aadapter strategy tive (Azapagic and Clift, 1999; Zhou et al., 2000; Chen
in which the SC controls the risk exposure of its assets et al., 2003, are the most widely used in process engineer-
by constantly adapting its operations to unfolding demand ing. Because the optimisation of a multiobjective problem
realisations. In the strategy known sisaper in turns, the is a procedure looking for a compromise policy, the result-
SC aims to restructure the demand distribution contract- ing Pareto-optimal or noninferior solution set consists of an
ing agreements with the customeén(pindi and Bassok, infinite number of options. In order to be able to suggest a
1999. specific point of this set, some attempts have been made to
Into the last group, the most popular approach is the compare the objectives between them, for example optimis-
two-stage decision process. Applications differ primarily ing a Nash-type function@jerdrum et al., 2001 defining
in the selection of the decision variables and the way in the objectives as fuzzy set€lfen et al., 2003or adding
which the expected value term, which involves a multi- the consideration of the decision-maker input in the problem
dimensional integral accounting for the probability formulationRodera et al. (2002)
distribution of the uncertain parameters, is computed. The The present work formulates the SC design problem as
difficulty of continuous distributions is avoided by in- a multiobjective stochastic MILP model, which is solved
troducing discrete scenarios, or combinations of discrete by using the standarelconstraint method, and branch and
samples of all the uncertain paramete@olien and Lee, bound techniques. This formulation takes into account not
1989; Subrahmanyam, 1996; lyer and Grossmann, 1998;only SC profit and customer satisfaction level, but also un-
Tsiakis et al., 200)L Pistikopoulos and co-workerA¢evedo certainty by means of the concept of financial risk, which
and Pistikopoulos, 1998; Bernardo et al., 1p%@ve ex- is defined as the probability of not meeting a certain profit
amined alternative strategies for evaluating the integral aspiration level Barbaro and Bagajewicz, 2004
term, ranging from cubature methods to sampling methods.
Maranas and collaboratorfétkov and Maranas, 1997,
Gupta and Maranas, 2000, 20@®nvert stochastic features 2. Problem statement
of the problem into a chance-constrained programming
problem. Finally, a different approach at strategic level  According to the approach previously outlined, the pro-
is the work of Applequist et al. (200Q)who presented a  posed model helps to determine the design of the usual three-
method for evaluating SC projects with the capability of echelon SC (production-storage-market) accounting for the
assessing the integral values based upon polytope volumesmaximisation of three objectives (the net present value, the
Literature reveals that the most important and extensively demand satisfaction and the financial risk) and taking into
studied source of uncertainty has been dem&hp(a and account the decision-maker preferences. Decisions to be de-
Maranas, 2000, 2003; Petkovand Maranas, 1997; lerapetritoucided include the capacity and location of the plants and
and Pistikopoulos, 1996; Ahmed and Sahinidis, 1998e warehouses, the amount of products to be made at each
emphasis on incorporating demand uncertainty into the plan-plant,and the flows of materials between each two nodes of
ning decisions is appropriate given the fact that effectively the SC. The structure of the aforementioned SC is depicted
meeting customer demand is what mainly drives most SCin Fig. 1 It includes the following elements:
planning initiatives.
In traditional SCM, minimising costs or maximising profit e a set of plants where products are manufactured prior to
as a single objective is often the optimisation focGslien be sent to the warehouses;
and Lee, 1989; Tsiakis et al., 200Moreover, the ability of e aset of warehouses where products are stored before being
responding to customer requirements turns out to be one of transported to the final markets;
the most basic functions of the SCM. Thus, customer servicee a set of final markets where products are available to cus-
should also be taken into consideration when formulating tomers.
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The result of the model provides a set of Pareto solutions to
be used by the decision-maker in order to find the best SC
configuration according to her/his preferences.

—> —> 3. Multiobjective stochastic model

A stochastic programming approach based on a recourse
model with two stages is proposed in this work to incorporate
the uncertainty associated to the demand within the design
process.

In a two-stage stochastic optimisation approach, the un-
certain model parameters are considered random variables
with an associated probability distribution and the decision
Fig. 1. Supply chain structure. variables are classified into two stages. The first-stage vari-
ables correspond to those decisions that need to be made
here-and-now, prior to the realisation of the uncertainty. The
second-stage or recourse variables correspond to those deci-
sions made after the uncertainty is unveiled and are usually
referred to as wait-and-see decisions. After the first-stage de-
cisions are taken and the random events realised, the second-
stage decisions are made subject to the restrictions imposed
by the second-stage problem. Due to the stochastic nature of

; . the performance associated with the second-stage decisions,

(price, . ) the objective functi ists of th f the first-

o interest rate (ir) and salvage value (SV); jective function consists of the sum of the first-stage

« capacity data of the nodes of the SC such as Capacityperformance measure and the ex'pected ;econd—stage perfor-
factors of products in each plantand each warehouse mance. More details on stochastic techniques can be found

j (api and B,;, respectively), maximum and minimum in Birge and Louveaux (1997)

llowabl it f plants and wareh BC In our problem, the uncertainty associated to the demand
allowable capacities of piants a arehouses (PCap is represented by a set of scenarios with given probability

PCayf, WHCag and WHCaff) and turnover ratios of  o¢ occurrence. Such scenarios together with their asso-
warehouses/(;); ciated probabilities must be provided as input data into
e taxes data such as taxes rate (tr) and number of depreciathe model. In case the demand follows a specific type
tion time intervals (nd); of probability distribution, this can be discretised using
o relationship between indirect expenses and capacities of\jonte Carlo sampling, thus generating a set of explicit
plants and warehouses {IF, 1p;, IEyy; andimpy;); scenarios.
e relationship between fixed capital investment and capac-  \oreover, decision variables which characterise the net-
ities of plants and warehouses (Bl 7p;, FCg,y; and  work configuration, namely those binary variables which

Plants Warehouses Markets

The overall problem can be formally stated as follows:
Given

e number and length of time intervals;
e demand data for each prodygtmarketk, time intervalt
and scenaris (Dem,,;,);
e prices of each product at each market, in each time interval

YWH; )3 represent the existence of the different nodes of the SC and
e direct cost parameters such as unit production (NC  the continuous ones which are related to the capacities of
transport (TC};;, TC2,j), handling (HG,) and inven-  ne sites, are considered as first-stage variables as it is as-
tory (IC,;) costs; sumed that they have to be taken at the design stage before
. the demand uncertainty is unveiled.
Find On the other hand, decision variables related to the amount

of products to be produced and stored in the nodes of the
e The configuration of the SC that maximises the net presentsc, the flows of materials transported among the entities of
value (NPV) and the demand satisfaction, and minimises the network and the product sales are considered as second-
the financial risk: stage variables.
o Number, locations and capacities of plants and ware- At the end of the design horizon, a different value of NPV
houses to be set; and demand satisfaction is obtained for each particular reali-
o Production rates of each product at each plant, for all sation of demand uncertainty. The proposed model accounts
the time intervals and scenariog fi); for the maximisation of the expected value of the profit dis-
o Flows of materials between the plants and warehousestyipytion, the target imposed for the customer satisfaction
(Xpijis) and between the warehouses and the marketsan the financial risk. The mathematical formulation of such
(Ypjkts)- model is next described.
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3.1. Mass balance constraints As occurs with the plants, it is defined a continuous vari-
able in order to represent the capacity of the warehouses

The mass balance must be satisfied in each of the siteWHCap;). Therefore, the total inventory gfkept at ware-

embedded in the SC. Therefore, for each platite total housej during time intervalt in scenarios (Inv,;;;) must

amount of producp manufactured during time intervain be lower than the capacity of the warehouse as stated by

scenarics (Q irs) must be transported fronto warehouses  Eq. (7), wheref ,; is a coefficient that weighs the storage

j as stated by Eq. (1), in whick ,;;;; represents the flow of  resources consumed by each produet j:

p sent byi toj in t ands.

Qpitszzxpijts Vp,it,s. 1)
J

Z InvpjisB,; SWHCap V. z.s. 7)
)

Moreover, the total flow of materials sent by warehopyse
With regard to the warehouses, for each time intetad  to the final marketk is also constrained by the variable
scenarios, the total amount of produgt sent by plani to WHCap; as expressed by Eq. (8). In such expression, it is
warehousg (X ,;j:5) plus the initial stock op kept afj at the supposed that for each time intertabcenarics and ware-
beginning oft (Inv,;,15) must be equal to the amountpf  housej, the capacity needed to handled a given amount of
transported fronj to final marketsk (Y;x:s) plus the final  products, assuming regular shipment and delivery schedule,
inventory ofp in j (Inv,.s), as expressed by constraint (2): is twice the summation of the average inventory levels of
productsp (AIL ,;;s) kept atj weighed by the storage coef-
D Xpijes W pje1s =Y Ypjkes +INVpjis ficients 3, (Simchi-Levi et al., 200
i k
Yp.j.t.s. @ 23 AL yuf,; SWHCaD, V. jit.s. C)
Moreover, it is considered that in the first period of time P

(r = 1), when the construction of the different sites of the AIL 0, is computed by means of Eq. (9), in which rep-

SC is supposed to take place, the flows of materials betweenresents the turnover ratio of the warehoisee.. the num
nodes are equal to zero as stated by constraint (3): : . USEC., .
ber of times that the stock is completely replaced per time

Qpits =0, Xpijts =0, ijkts =0 interval:
Vp.i, .k t=1s. ©)
Finally, the sales of produgtcarried out in markek during

time intervalt in scenarios (Y,;x;s) must be less than or ) ) . .
equal to the demand (Dey,) of this product at this market Finally, the capacity of the warehouges constrained by

Zk Ypjkts
;uj

A”—pjts= Vp,Jj.t,s. (9)

(4): lower and upper bounds (WHCamnd WHCaf) in case
the warehouse is finally set, as stated by Eq. (10). The binary
Z Ypikes <D€Myiis  VYp, kot s. 4) variable B; used in this expression represents the existence
j of a warehousgand takes the value of 1 in cajsis opened

and 0 otherwise.
3.2. Capacity constraints
WHCag B; <WHCap, <WHCag/ B, V. (10)
The capacity of each planis represented by a continuous
variable (PCap), which must be higher than the total amount 3.3. Objective function
of productsp manufactured atfor every time intervat and
scenarios as stated by Eq. (5). The parametgf used in The production/distribution system whose model has been
this expression weighs the amount of resources consumedlescribed before must attain three targets:
by each producp ati.
e maximise the NPV;
Z Qpirstpi <PCap Vi, t,s. ) e maximise the demand satisfaction, which in turn may
p bring future sales;

Furthermore, PCapis constrained by upper and lower ® Minimise the financial risk.

bounds (PCap and PCaf) in case the plant is finally set

as stated by Eq. (6). In this equatioty, is a binary variable |

which takes the value of 1 in case the plant is opened and3'3'11 Net present vaiue .

0 otherwise. As can be observed, if the plant is not set, it AS_ ithas been mentlongd before, different NPV values are

cannot manufacture any product as its capacity is forced to obtalped for each scenario under study (Npshce the un-

take a value equal to zero: certainty is unveiled. The model described before must ac-
count for the maximisation of the expected valigNPV])

PCag A; <PCap<PCay A; Vi. (6) of the resulting NPV distribution, which can be computed
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by performing an average of the aforementioned NRY The revenues obtained in each time intetvahd scenario

stated by Eq. (11): s are proportional to the sales of produgtsat marketsk
(Salesys) and their associated prices (Prigg as stated
E[NPV] = Z prob, NPV;. (11) by Egs. (18) and (19):
Rev, = Z Salegys Pricey;, Vi, s, (18)

The values of NPY must be determined according to ap-
plicable rules (depreciation), legislation (taxes), etc., so this
may lead to different formulations. The following equations Salesy,, = Z Ypjkis ¥p.k,t,s. (19)
intend to reflect a general case: -

Having in mind such purpose, NR\s calculated for each ) o ) ) )
scenarios as the summation of the discounted cash flows Regarding the indirect expenses generated in each time in-

(CF.,) generated in each of the time intervala which the terval t (IE;), it is considered that these are proportional

pk

J

time horizon is divided as expressed by Eq. (12): to the capacities of the plants/warehouses, as expressed by
constraint (20).
CFy
NPV, = Xt: Tr i Vs. (12) IE, = > (IEk, A; + PCaprp,)
i
With regard to the cash flows, these are computed for each + Z(IEﬁ,HJ-Bj +WHCapny ;) Vi (20)
scenarios and time intervat as the difference between the j

revenues (Regy) and the total costs. Such costs include the
direct (DE;) and indirect expenses ([Eas well as the taxes
(Taxs) originated by all the production, distribution and
storage activities performed in the day to day SC operation.
Moreover, it is supposed that the necessary capital invest-
ment (CI) for carrying out the construction of the SC takes
place in the first period of time, while the working capital
(WC), which is part of this initial investment, and the sal-
vage value of the SC (SV) are recovered in the last time
interval as indicated by Egs. (13)—(15):

It should be mentioned that this term is computed directly
from the first-stage variables (SC configuration) and with-
out evaluating second-stage decisions, and therefore remains
constant for all the scenarios under study once the uncer-
tainty is unveiled.

The direct expenses obtained in time intervand sce-
nario s (DE;,) are proportional to the amount of products
manufactured, stored and transported through the different
nodes of the SC, as stated by Eq. (21). Such costs include,
therefore, the following terms:

CF;=—Cl=—(FCI+WC) Vs, t=1, (13)

e Variable production costs at the plants, which are assumed
CFis = —Rev, — DB — IE, — Tax; to be equal to the production rates of produstsianu-
Vs, 1<t <T, (14) factured at plants in each time intervat and scenaris
CF,, = —Rev, — DE,, — IE, — Tax, + WC + SV (Q,M.) multiplied by the unit production co;ts (pr.
Vs.t—T. (15) e Handling costs at the warehouses, which in this case are

assumed to be equal to the flows of prodygtsent by
The total capital investment (Cl) is calculated by adding warehouse§to marketsk in time intervalt and scenario
the fixed capital investment (FCI) and the working capital S (¥pjk:s) multiplied by the unit handling costs (Hg).

(WC). The first term includes the cost of setting the plants e Transport costs, which are supposed to be equal to the
and warehouses embedded in the SC and is a linear function flows of materials transported between plants and ware-

of their capacities (16). houses X ,;j:s) and warehouses and markets, {.;s) in
each scenarig and time intervat multiplied by the unit
FCl= Z(FCI%I-A,- + PCapyp;) transport costs (TGL; and TC3,j,, respectively).
i e Inventory-holding costs at the warehouses, which are sup-
+ Z(FQLWH]_ Bj +WHCap,yy 4)- (16) posed to be equal to the average inventory levels of product
; p kept at warehousgin each scenarig and time interval

t (AIL ,j;s) multiplied by the unit inventory costs (IG).
On the other hand, the working capital (WC), which rep-

resents the initial amount of money that is necessary in or-
der to start the production and distribution activities in the DEws = Z QpirsVCpi + Z YpikisHC);

network, is supposed to be directly proportional to FCI as pi pik
expressed by constraint (17). In such equation, the propor- + Z X pijesTCLyij + Z Y pjkes TC2pj
tionality constantu is considered to be equal jo= 0.194 i ik
(Biegler et al., 199) Y. .
+3° %’f”mw Vi, s. (21)

WC = uFCl. 17) ik
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Finally, the taxes to be paid in each time intervahd sce- issue leads to the following model:
narios (Tax;) are computed assuming a linear depreciation o

policy as stated by constraints (22)—(24). In these equations, MaXimise{E[NPV]; MDSag

tr represents the taxes rate to be applied on the gross bensubject to

efit, and nd the number of time periods through which the Eqgs (1)-(25),

depreciation will be carried out:

where
= — Vli<t<
Taxs = (Rev; — Dep)tr Vli<r<nd+1,s, (22) MDSat< Zpk SDale%kts viels )
Tax, = Revstr vnd+1<7<T,s, (23) 2 pk DeMpits
Therefore, by selecting a certain value for MDSat, it is guar-
Dep = FCl-Sv Vi, (24) anteed that for each scenasiand time interval > 1 at least
nd the minimum desired demand satisfaction level is reached.
The formulation described above is thus able to reflect the
3.3.2. Demand satisfaction operational policy that consists in obtaining the actual max-
Customer demand satisfaction for each time intetraaid imum profit at each scenario and time interval while en-
scenarios (DSat,) is measured as the average of the not suring that the demand satisfaction previously fixed is also
covered demand (25): achieved in all of them.
Each SC configuration leads to two histograms, one for
DSat, — 2 pi Selegs Vi>1s. (25)  the NPV and another one for the demand satisfaction, and
: Zpk DeMykss therefore exhibits a[NPV] for a given operational policy

(MDSat). This value off[NPV] may change depending on
As occurred with the NPV, it is possible to compute the the demand satisfaction target imposed to the SC operation,
expected value of the demand satisfaction by performing anas will be discussed in the case study.
average of the values of DSafor all the scenarios and
time intervalst as expressed by constraint (26): 3.3.3. Financial risk

The financial risk associated with a design project under

uncertainty is defined as the probability of not meeting a cer-
tain target profit (maximisation) or cost (minimisation) level
referred to a9? (Barbaro and Bagajewicz, 20p4~or the
The SC design problem, without considering the financial two-stage stochastic problem, the financial risk associated
risk, would be therefore mathematically formulated as fol- with a designk and target profif2 is therefore expressed by

Z?:z >, prob,Dsat;

E[DSaf = 71

(26)

lows: the following probability:
maximisg E[NPV]; E[DSaf} Risk(x, Q) = P(NPV(x) < Q), (28)
subject to

where NP\(x) is the NPV after the uncertainty has been un-
veiled and a scenario realised. The definition of RiskK2)
can be rewritten with the help of binary variables as follows:

Eqgs(1)—(26).

The main drawback of such mathematical formulation lies
on the fact that it does not reflect a realistic operational pol-
icy in terms of the demand satisfaction level to be achieved
by the SC. If the expected value of the demand satisfaction
is pursued as objective, the resulting Pareto optimal SC con-Wherez; is a new binary variable defined for each scenario
figurations may exhibit in some scenarios and time intervals as follows:

demand satisfaction levels under the average while in oth- {l if NPV, < Q.

Risk(x, @) = ) " probz,(x, Q), (29)

ers may exceed it. This means that the operational strategyzs (x, £2) = (30)

of the SC towards the demand satisfaction will depend on

the scenario that finally materialises, as well as the time in- In a discrete scenario case, financial risk is given by the

terval considered, which does not seem desirable from thecumulative frequency obtained from the NPV histogram as

decision-maker’s perspective. depicted inFig. 2 A more straightforward way of assessing
In order to overcome such difficulty and explicitly take and understanding the trade-offs between risk and profit is

into account the demand satisfaction strategy of the enter-to use the cumulative risk curve as depictedrig. 3.

prise, aminimum targefor the demand satisfaction (MD- A possible way of avoiding the use of binary variables

Sat), which must be attained in all the time intervals and to determine the risk consists of reformulating the problem

scenarios, is incorporated as an objective within the existing without explicitly using this definition. For this purpose, the

formulation, thus avoiding the use of tEfDSat]. This new use of the concept of downside risk, in the way introduced

0 otherwise
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Fig. 3. Cumulative risk curves.

by Eppen et al. (1989)s applied. The DRisk, ) is cal-
culated with the help of the following constraints:

DRisk(x, Q) = Z prob, ds (x, ),

Os(x, Q) >Q — NPV Vs,

Os(x, 2)>0 Vs, (31)

where o, is a continuous variable. The DRisk Q) can

be utilised to control financial risk at different NPV targets
by varying Q from small values up to higher values and
obtaining a full spectrum of solutions to be used by the
decision-maker as a decision support tool.

4. Multiobjective problem

The resulting objective function which includes the three

1541

be finally expressed as follows:

maximise{ E[NPV]; MDSat —DRisk}. (32)

The solution of this problem consists of a set of Pareto op-
timal SC configurations. These are obtained in this work by
applying thes-constraint method, first introduced blaimes

et al. (1971) Such method is based on the maximisation of
one objective function, and considering the other objectives
as constraints bounded by some allowable legglSThen,

the levelseg may be altered to generate the entire Pareto-
optimal set. Therefore, the following single MILP optimisa-
tion formulation is applied to obtain the Pareto solutions:

maximise E[NPV]
subject to
Egs (1)—(24), (27) and (31),

MDSat> ¢1,
DRisk(x, Q) <ey.

Therefore, by changing the values of the bound lexgtnd
&2, as well as the targe®, a set of results can be obtained.
Each of these results implies an SC configuration. The re-
sulting Pareto solutions might be represented in a three-
dimensional chart{[NPV], MDSat and DRiskx, ).

The methodology to solve the proposed problem is as
follows:

(1) Select a target for the downside risk calculati@).(
(2) Set initial targets for each objective (@ndey).

(3) Solve the proposed model.

(4) Obtain the corresponding Pareto solution.

(5) Choose a configuration from the Pareto set.

If the decision-maker is satisfied with the design then stop.
Otherwise go to step 1.

The proposed strategy should lead to a final SC design
which would represent the desired compromise among the
different objectives from the decision-maker’s perspective.
Regarding financial risk, it is also important to point out
that this term can be managed by changing both, the target
associated to the downside risk itseif)(and the aspiration
level for which such term is compute€®).

5. A motivating example

In order to illustrate the capabilities of the proposed
model, a hypothetical case study has been studied. The prob-
lem consists of finding the optimal retrofit of an existing SC
established in Europe in terms of economic (NPV), demand
satisfaction (MDSat) and risk (DRigk, ©)) performance.
The information available to carry out such task includes
the cost data concerning the production and distribution
activities of the network and the probability distribution of

objectives (NPV, demand satisfaction and financial risk) can the uncertain demand. The optimal redesign must include
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Existing plant

B Potential plant location
Existing warehouse
A Potential warehouse location
g ® Existing market !
.
=ik y-
5 ) IN

/ g ORIAOA

Fig. 4. Case study.

the number, location and capacities of the new plants andTable 1 . _

warehouses to be established, as well as the new capacities?"er and upper capacity bounds of plant>Cagf and PCaf})

of the existing sites in case these .sh.oul_d be rT_10d|f|eq. Plant PCap PCag)
The structure of the case study is indicatedrig. 4. It is location (kg) (kg)

assumed that the existing plants and warehouses, which are

; . ; B 0 50,000,000

located in Barcelona and Milan, are forced to remain opened M? 0 50.000.000
in the future and only their capacities can be increased in caseg, 0 50,000,000
this would be necessary (the model would therefore provide mo 0 50,000,000
the additional capacities to be added to these new nodesBu 0 50,000,000
0 50,000,000

with respect to the original one). The original capacities of W
the plants in Barcelona and Milan are equal to 200,000 and
80,000Kkg, respectively, and 160,000 and 60,000kg for the
warehouses, in the same order. (B), Manchester (M), London (L), Milan (Mi) and Berlin
Four potential location candidates distributed among East (Be) and by 10% per year in Bratislava (Br), Warsaw (W)
Europe countries are provided for plants and five for ware- Bucharest (Bu), and Moscow (Mo). On the other hand, it is
houses. All the required information related to the plants also considered that prices of products remain constant for
is shown inTables 1-4 while all the data concerning the the whole time horizon. The tax rate and the discount rate
warehouses are given fables 5-9 The original network  are assumed to be equal to 30% and 10%, respectively, and
manufactures three different products (P1, P2 and P3) whichthe salvage value of the SC is supposed to be a 10% of the
are delivered to 11 final markefBables 10-15present the FCI. The time horizon is divided into ten time intervals and
transport costs. The mean demand (MDghas well as depreciation takes place in the first seven periods of time.
the prices of the products for the first time interval are listed Finally, it is assumed that the flows of materials associated
in Table 16With regard to the demand of future time in- to the existing sites (plants and warehouses located in B and
tervals, it is assumed that it remains constant in Valencia Mi) are not forced to be equal to zero for the first time in-
(V), increases by 2.5% per year in Barcelona (Ba), Bristol terval. This issue is considered in the determination of the
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Table 2
Production capacity factors of produgisat plantsi (x,; (adim))

Product Plant location

Ba Mi Br Mo Bu W
P1 1.5 1.5 1.5 1.5 1.5 1.5
P2 1.3 1.3 1.3 1.3 1.3 1.3
P3 1.0 1.0 1.0 1.0 1.0 1.0
Table 3

Variable production costs of produggsat plantsi (VC,; (m.u./kg))

Product Plant location

Ba Mi Br Mo Bu W
P1 30 40 25 20 15 25
P2 22 30 19 15 11 19
P3 15 20 13 10 8 13
Table 4 5.1. The deterministic Pareto optimal solutions

Fixed capital investment and indirect expenses parameters of plants

FCIL., vp;, IEL. andnp; ' . L
(FCTp; 7pir 1B, "pi) In first place, the model is solved as a deterministic case,

Plant FCh, (mu)  7p; IEL. (mu)  np; which means that the behavior of the demand for each time
location (m.u./kg) (m.u./kg) interval and market is assumed to be perfectly known and
Ba 200,000 0 600,000 0 therefore only one scenario with mean demand values is
Mi 100,000 10 800,000 10 considered (Tabl&g).

Br 500,000 10 500,000 10 The resulting mathematical formulation has 1128 single
Mo 800,000 10 400,000 10 equations, 4010 continuous variables and 13 binary vari-
Bu 300,000 10 300,000 10 ables, and it is implemented in GAM8Iooke et al., 1988

w 500,000 10 500,000 10 and solved using the MILP solver of CPLEX 7.0. The time

required to obtain solutions with 0% integrality gap on an

AMD Athlon 3000 computer ranges from 0.3 to 0.6 s (de-

pending on the target imposed to the demand satisfaction).
Table 5 When the deterministic case is solved without constrain-
Lower and upper capaciEy bounds and turnover ratios of warehduses ing the value of demand satisfaction, the result of the model
(WHCag);, WHCag and ) leads to a solution with MDSat 36.3%, i.e., the best eco-
Warehouse WHC%D WHCaps/ ] nomic performance is reached, satisfying customer demand
location kg) ka) (adim) up to a certain level. In other words, only above such value
of demand satisfaction level some trade-off between the ob-

Ba 0 50,000,000 4 jectives exists and below it the solution is the same as that
,E)/” 8 ;’8”888”888 j of the model without constraining demand satisfaction.

Br 0 50,000,000 4 The Pareto deterministic optimal curve is next obtained

Mo 0 50,000,000 4 by maximising the NPV and progressively constraining the

Bu 0 50,000,000 4 MDSat. Therefore, each point of this Pareto curve implies a
w 0 50,000,000 4

SC design operating under a demand satisfaction policy rep-
resented by the target imposed to the optimisation prob-
lem. Fig. 5shows the aforementioned Pareto curve while in
Fig. 6three SC configurations (locations and capacities ex-
cash flow of the first time interval, where the production, pressed in kg) which correspond to different points of the
storage and distribution activities carried out by the existing curve (MDSat= 40%, 60% and 80%) are given. It is inter-
nodes are also considered together with the capital invest-esting to notice how the number of plants and warehouses
ment term. Finally, it is assumed that the indirect expenses established as well as their capacities increase as more de-
of the existing SC are equal to 3,500,000 monetary units mand satisfaction is requested. For instance, the solution
(m.u.). with a MDSat= 40% implies the set-up of two new nodes




1544 G. Guillén et al. / Chemical Engineering Science 60 (2005) 1535—-1553

Table 6
Storage capacity factors of produgisat warehouses (8 b (adim))

Product Warehouse location

Ba D Mi Br Mo Bu W
P1 15 15 15 15 15 15 15
P2 1.3 1.3 1.3 1.3 1.3 1.3 1.3
P3 1.0 1.0 1.0 1.0 1.0 1.0 1.0
Table 7

Handling costs of products at warehouseg (HC,,; (m.u./kg))

Product Warehouse location

Ba D Mi Br Mo Bu W
P1 3.0 5.0 4.0 2.5 2.0 1.5 2.5
P2 2.5 3.8 3.0 1.9 15 1.1 1.9
P3 15 2.5 2.0 1.3 1.0 0.8 1.3
Table 8
Inventory costs of products at warehouses (IC,,; (m.u./kgyear)
Product Warehouse location

Ba D Mi Br Mo Bu W
P1 3.0 5.0 4.0 2.5 2.0 15 2.5
P2 2.5 3.8 3.0 1.9 15 1.1 1.9
P3 15 2.5 2.0 1.3 1.0 0.8 1.3
Table 9

Fixed capital investment and indirect expenses parameters of warehc(lmtwﬁ,m, TWHj IEﬁ/Hj and nWHj)

Warehouse FC%{,H]. (m.u.) TWHj IEﬁ/Hj (m.u) nwHj
location (m.u./kg) (m.u./kg)
Ba 20,000.0 10.0 60,000.0 25

D 400,000.0 10.0 90,000.0 2.5

Mi 10,000.0 10.0 80,000.0 2.5

Br 50,000.0 10.0 50,000.0 2.5

Mo 80,000.0 10.0 40,000.0 25

Bu 30,000.0 10.0 30,000.0 2.5

w 50,000.0 10.0 50,000.0 25
Table 10

Transport cost between plaritand warehousegfor product P1 (TC},;; (m.u./kg))

Plant location Warehouse location

Ba D Mi Br Mo Bu W
Ba 0.0 12.9 9.7 18.3 35.9 25.9 23.3
Mi 9.8 10.7 0.0 8.7 27.6 16.3 15.1
Br 18.3 13.1 8.7 0.0 19.0 10.0 6.4
Mo 35.9 26.7 27.6 19.0 0.0 17.8 12.6
Bu 25.9 22.8 16.3 10 17.8 0.0 11.6

W 23.3 14.1 15.1 6.4 12.6 11.6 0.0
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Table 11
Transport cost between plaritand warehousegfor product P2 (TC};; (m.u./kg))
Plant location Warehouse location
Ba D Mi Br Mo Bu w
Ba 0.0 16.1 12.2 22.9 44.8 32.3 29.2
Mi 12.2 134 0.0 10.9 34.5 20.4 18.9
Br 22.9 16.3 10.9 0.0 23.7 12.4 8.1
Mo 44.8 333 34.5 23.7 0.0 22.3 15.8
Bu 32.3 28.5 20.4 12.4 223 0.0 145
w 29.2 17.6 18.9 8.1 15.8 145 0.0
Table 12
Transport cost between plarit@nd warehousegfor product P3 (TC};; (m.u./kg))
Plant location Warehouse location
Ba D Mi Br Mo Bu W

Ba 0.0 19.3 14.6 27.5 53.8 38.8 35.0
Mi 14.6 16.1 0.0 13.1 415 24.4 22.7
Br 27.5 19.6 131 0.0 28.5 14.9 9.7
Mo 53.8 40.0 415 28.5 0.0 26.8 18.9
Bu 38.8 34.2 24.4 14.9 26.8 0.0 17.4
w 35.0 211 22.7 9.7 18.9 17.4 0.0
Table 13
Transport cost between warehougesnd markets for product P1 (TCg;x (m.u./kg))
Ware Market location

\% Ba B M L Mi Be Br Mo Bu
Ba 34 0.0 13.2 15.8 14 10 18.5 18.3 23.3 35.9 25.9
D 16 12.9 3.2 4.6 1.2 10.7 8.5 13.1 141 26.7 22.8
Mi 13.1 9.7 13.8 15.2 11.8 0.0 10.3 8.7 15.1 27.6 16.3
Br 21.7 18.3 17.0 18.4 15.0 8.7 6.6 0.0 6.4 19.0 9.95
Mo 39.2 35.9 30.6 26.9 28.7 27.6 18.6 19.0 12.6 0.0 17.8
Bu 29.2 25.9 26.7 28.1 24.7 16.3 16.5 10.0 11.6 17.8 0.0
w 26.7 23.3 18.0 14.3 16.1 15.1 5.9 6.4 0.0 12.6 11.6
Table 14
Transport cost between warehougesnd marketk for product P2 (TCg;; (m.u./kg))
Ware Market location

\% Ba B M L Mi Be Br W Mo Bu
Ba 43 0.0 16.5 19.7 17.5 12.2 23.2 22.9 29.2 44.8 32.3
D 19.9 16.1 4.0 5.8 15 134 10.6 16.3 17.6 33.3 28.4
Mi 16.4 12.2 17.2 19.0 14.8 0.0 13 10.9 18.9 345 20.4
Br 27.1 22.9 21.3 23.0 18.8 10.9 8.2 0.0 8.1 23.7 12.4
Mo 49.0 44.8 38.3 33.6 35.8 345 23.2 23.7 15.8 0.0 22.3
Bu 36.6 32.3 334 35.1 30.9 20.4 20.6 12.4 145 22.3 0.0
w 334 29.2 225 17.9 20.1 18.9 7.4 8.1 0.0 15.8 145
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Table 15
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Transport cost between warehougesnd marketsk for product P3 (TCg;x (m.u./kg))

Ware Market location
\ Ba B M Mi Be Br w Mo Bu

Ba 5.2 0.0 19.8 23.7 21.0 14.6 27.8 27.5 35.0 53.8 38.8
D 23.9 19.3 4.8 6.9 1.9 16.1 12.7 19.6 21.1 40.0 34.1
Mi 19.6 14.6 20.7 22.8 17.7 0.0 15.5 13.1 22.7 41.5 24.4
Br 325 27.5 25.5 27.6 22.6 13.1 9.8 0.0 9.7 28.5 14.9
Mo 58.5 53.8 459 40.4 43.0 415 27.8 28.5 18.9 0.0 26.8
Bu 43.9 38.8 40.1 42.2 37.1 24.4 24.7 14.9 17.4 26.8 0.0
w 40.1 35.0 27.0 21.5 24.1 22.7 8.9 9.7 0.0 18.9 17.4
Table 16

Demand and prices of produgbsat marketsk in the first time interval

Market Deny; (k) Price,;, (m.u.)
P1 P2 P3 P1 P2 P3
\Y 10,000.0 5,000.0 5,000.0 73.8 65.0 53.1
Ba 60,000.0 20,000.0 20,000.0 73.8 65.0 53.1
B 5,000.0 7,500.0 2,500.0 57.5 50.6 41.4
M 10,000.0 15,000.0 5,000.0 57.5 50.6 41.4
L 10,000.0 50,000.0 15,000.0 57.5 50.6 41.4
Mi 75,000.0 25,000.0 25,000.0 475 41.8 34.2
Be 25,000.0 10,000.0 15,000.0 40 35.2 28.8
Br 20,000.0 2,500.0 2,500.0 27.5 24.2 19.8
w 50,000.0 30,000.0 10,000.0 28.8 25.3 20.7
Mo 75,000.0 25,000.0 50,000.0 475 41.8 34.2
Bu 50,000.0 10,000.0 10,000.0 21.3 18.7 15.3
15 X10 it is possible to obtain for each SC design anothyerative
’ — Giobal Pareto Curve Pareto curve by fixing the variables which represent the con-
1t % T P erative Parete Gurve Mbaat = 7006 | figuration of the SC and solving the multiobjective problem
0.5 \ = Operative Pareto Curve MDSat = 100% which accounts for the maximisation of the NPV and the
o \ DSat. InFig. 5, the Pareto operative curves associated to the
! same SC designs (MDSat40% 60% and 80%) are also
;ﬁ 05 ' depicted. As it can be observed, there is a trade-off between
= -1 ' both objectives above a certain demand satisfaction level as
g 15 occurred with the general Pareto curve. Moreover, each op-
wo erative curve ends at a point that corresponds to the MD-
2 Sat level above which the SC design is not able to operate
25 due to the capacity constraints. It may occur that some SC
5 designs are able to operate for higher demand satisfaction
‘‘‘‘‘‘‘‘‘ N levels than those for which they were originally designed.
_35 I I I I 1 1 H H H H
20 20 50 60 70 80 90 100 This can be achieved by manufacturing products with lower
MDSat (%) unit capacity coefficients. It is worthwhile to mention that

(one plant and one warehouse) while four and six new sites
are opened when MDSat is forced to be higher than 60%

Fig. 5. Deterministic Pareto curve.

and 80%, respectively.
It should also be mentioned that although each of the ob- 5.2. Stochastic case

tained SC configurations is Pareto optimal for a certain value

of MDSat, they can operate under different demand satis- The same case study, with the same input parameters but

faction policies, thus leading to dissimilar NPVs. Therefore, taking into account demand uncertainty, is next solved. In

the Pareto curve envelops all the particular operative Pareto
curves and touches them only at a certain demand satisfac-
tion level. At this level, the configuration is Pareto solution
of the global multiobjective optimisation problem.
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Deterministic Pareto solution  Deterministic Pareto solution  Deterministic Pareto solution

(MDSat = 40 %) (MDSat = 70 %) (MDSat = 100 %)
Ba Balll Ba ! Ba Balll Ball
200000 160000 200000 160000 200000 160000
MR M D Mi i (8 Mi e Mi (8
80000 60000 80000 60000 80000 60000
MolEE Mo Mol Mol Mol Mol
245417 125938 291215 174375 288472 174375
Bu L Bullll Bu Bu
285037 142838 315405 169416
w it W
396351 204344

Fig. 6. Deterministic Pareto designs.

this work, the uncertainty associated to such parameter is x 10’

represented by 100 equiprobable scenarios. The scenarios ' ' '._.SE’SZ';?JSZTSEEEJ.'}?’S‘;ﬁ;ﬂ"ﬁi’m(MDsm:m%;
are generated as follows. In the first place, a Monte Carlo 1l T Qperative stochasti Pareto cunve (0S|
sampling is performed over a set of normal probability dis-

tributions which describe the demand associated to product ol

P1 in each market and time interval. In the second place, _
the demands of P2 and P3 are computed, assuming that the2 _;|
rates between the demands of the different products equal <
their corresponding deterministic counterparts for each mar- £ -2}
ket and time interval. The standard deviations of all the prob- =

ability distributions are supposed to be equal to 10% for all -3}
the markets except for Mo, for which it is assumed to be
equal to 30%. In all the cases, the standard deviations in- -4}
crease by 1% per time interval.
The resulting mathematical formulation has 109,946 sin- 0 30 20 S0 0 70 80 90 100

gle equations, 398,129 continuous variables and 13 binary
variables, and is also implemented in GAMB&E ¢oke et al.,
1988 and solved using CPLEX 7.0. The time required to Fig. 7. Stochastic Pareto curve.
obtain solutions with 0% integrality gap on a AMD Athlon
3000 computer ranges from 7200 to 28,800 s depending on
the target imposed to the customer satisfaction (note, how-associatedZ[NPV] as shown in the figure. As can be also
ever, that the major purpose of the work is to propose a SC observed, solutions with higher MDSat imply networks with
design framework rather than develop the best efficient solu-larger capacities due to the need of covering more demand.
tion algorithm). It is important to mention that the number of For instance, the design which corresponds to MRSH1%
binary variables in this case is the same as in the determin-involves the establishment of two new nodes while four and
istic formulation, since they represent first-stage decisions Six new sites are set up when the demand satisfaction level
(SC configuration) which are not scenario dependant. imposed is equal to 60% and 80%, respectively.
As occurred before in the deterministic case, the SC con-
figurations can operate under different demand satisfaction
5.2.1. The stochastic Pareto optimal solutions policies once the uncertainty is unveiled thus leading to dif-
Fig. 7 shows the Pareto curve obtained for the stochastic ferent E[NPV]s. Therefore, an operative stochastic Pareto
problem while inFig. 8 three SC configurations (location curve can be generated for each of these configurations by
and capacities of the different nodes expressed in kg) whichfixing the design variables in the stochastic formulation and
correspond to the different depicted points of the curve. As maximising theE[NPV] for different targets of MDSat. The
occurred in the deterministic case, satisfying the demand isoperative Pareto curves corresponding to the configurations
profitable until a certain level MDSat 27.8%. Above this with MDSat= 40%, 60% and 80% have been depicted to-
level, there is a trade-off between both objectives, since angether with the global Pareto stochastic curverig. 7. It
increment in the value of MDSat implies a decrease in the can be observed how the last one wraps all the operative

MDSat (%)



G. Guillén et al. / Chemical Engineering Science 60 (2005) 1535—-1553

1548

Stochastic Pareto solution Stochastic Pareto solution Stochastic Pareto solution
(MDSat = 40 %) (MDSat =70 %) (MDSat = 100 %)
Balitl BallL ) Balitl| Balll) Balitl] Ballll
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Fig. 8. Stochastic Pareto designs.
100 i k4 - ) 4 2 X 10’ ; ; ; ; 25
;|- MDSat = 40 % ! = = Cl of the stochastic Pareto design .
90 1 |— MDSat=70 % ! b — ClI of the deterministic Pareto design P
I |- - MDSat = 100 % ; it T T— 4]
80} 1 R B
! 1
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[y 1 1
S 1 1
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1
-:‘% 40t : ; | 3
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1 1
, !
20t : !! g 4l - N
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NPV (m.u.)
Fig. 10. Deterministic vs. stochastic Pareto solutions.

Fig. 9. Risk curves of stochastic Pareto solutions.

stochastic Pareto curves of the Pareto designs and touchegf this kind of mistakes may appear when a deterministic

them at one point for which they are Pareto optimal solu- model is used to solve problems which are affected by un-
certain parameters considering just mean values for such

tions of the overall problem.
Moreover, Fig. 9 depicts the financial risk curves as- parameters.
sociated to the same points of the Pareto optimal curve |n order to perform the aforementioned comparison, the

(MDSat= 40% 60% and 80%). It can be observed in such SC designs obtained by solving the proposed multiobjec-
a figure how the risk curves of the Pareto solutions move to tjve formulation for the mean scenario are evaluated against
the left as they are forced to fulfil more demand. In other the uncertain environment. Such evaluation is carried out as
words, SC designs with larger MDSat values exhibit lower fg|iows.

E[NPV]s and higher probabilities of lower profits. For in- |n the first place, a demand satisfaction level is selected.
stance, for the curve with an MDSat40%, the probabil- | the second place, for the selected MDSat, the correspond-
ity of obtaining an NPV lower than Om.u. is equal to zero, ng values of the design variables (location and capacities

while such probability increases up to 100% for configura- of the different nodes of the SC) of the deterministic Pareto
solution computed for the mean value scenario are taken.

Finally, these variables are fixed as first-stage variables in
the stochastic model considering the set of 100 scenarios,
and the multiobjective stochastic formulation is next solved

tions with MDSat= 70% and 100%.

5.3. Deterministic vs stochastic solutions

A comparison between the deterministic and the stochas-accounting for the maximisation of the[NPV] and con-
tic solution is performed next, with the aim of measuring straining the MDSat to be higher than the MDSat target
the effect of not considering uncertainty in those situations for which the deterministic design was obtained. Such pro-
where the environment is actually uncertain. An example cedure allows to compute the values of the second-stage
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Fig. 11. Comparison of the deterministic and stochastic Pareto designs Fig. 13. Comparison of the deterministic and stochastic Pareto designs

for MDSat= 40% for all the scenarios. for MDSat=40% under different operative policies.
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Fig. 14. Risk curves of the deterministic and stochastic Pareto designs

Fig. 12. Risk curves of the deterministic and stochastic Pareto designs without constraining MDSat.

for MDSat= 40%.

variables for the given first-stage ones. The procedure is fi- associated to the stochastic and deterministic designs are
nally repeated until the entire set of deterministic Pareto so- also depicted irFig. 10 As can be observed, the CI values
lutions is evaluated through the stochastic formulation. By associated to the SC configurations computed by means of
applying this procedure, it can be seen how almost all the de-the stochastic formulation are higher than those correspond-
terministic SC configurations are not able to reach the MD- ing to their deterministic counterparts above MDSa1%.

Sat for which they were originally designed once the uncer- The stochastic formulation forces to chose SC configurations
tainty is unveiled. Moreover, ifrig. 10 a curve that repre-  with higher capacities which are able to reach the MDSat
sents the deterministic SC configurations which manage tofor which they are designed under all the scenarios and not
keep the MDSats under the uncertain environment has beeronly for the mean demand scenario that finally leads to SC
plotted together with the Pareto stochastic curve. It can be configurations with higher CI values.

observed how although such designs guarantee the demand In Fig. 11, the SC configuration calculated by means of
satisfaction level previously imposed in the deterministic the stochastic formulation for MDSat 40% is compared
formulation under all the scenarios, th&fNPV]s are ap- with its deterministic analogue under all the scenarios. The
proximately 4-5% lower than those achieved by their corre- figure shows that there are many scenarios in which the
sponding stochastic counterparts, i.e., the SC configurationsdeterministic configuration yields higher benefits than the
computed by means of the stochastic formulation consider- stochastic one, although others result in larger losses,
ing the 100 scenarios and the same MDSat target. The Clwhich finally leads to a loweE[NPV] (10,656,700 m.u. for
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Deterministic Pareto solution (MDSat = 28.5 %) Stochastic Pareto solution (MDSat = 27.8 %)
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Fig. 15. Designs of the deterministic and stochastic Pareto designs without constraining MDSat.

the deterministic case and 11,146,620 m.u. for the stochas- = = Deterministic Pareto solution (DRIsk(9.10%) = 72,762 mu)

tic one). This can be also observed in the NPV histograms — Stochasic Pareto solution (DRisk(9-10°) = 26,292 m.u)
: : : : — DRisk(9-10°% = 6,500 m.u.
corresponding to both SC configurations (Fig). Not only — -~ DRisk(9-10%) = 2.000 m.u.

does the deterministic design exhibit IeB§NPV] but it ‘= DRisk(9-10%) = 250 m.u.
also presents higher probabilities of low profits as can be 100 ‘ ‘ ‘
seen in the figure. For instance, the deterministic design  oo|
exhibits a 14% probability of profits below % 10° m.u.,
while the stochastic configuration yields a 7%. In addition,
in Fig. 13both designs are compared under different oper- 70t
ational policies (MDSat). The associated operative Pareto & gq!
curves show how the stochastic design performs better than £
the deterministic one for the entire range of demand sat- =
isfaction levels. It is also interesting to point out that the
stochastic design is able to operate at most for a demand
satisfaction level equal to 42%, while the deterministic one
is only able to reach a MDSat 41%. 20¢
Finally, the most profitable deterministic and stochastic 10}
SC configurations, i.e., those computed by maximising NPV
and without constraining the MDSat for the mean scenario 0.7
and considering the set of 100 scenarios, have been com-
pared. InFig. 14 the histograms associated to both designs
are depicted. It can be observed how the stochastic design Fig. 16. Risk curves for MDSat 37%.
implies less risk at lower profits. For instance, the proba-
bility of an NPV lower than 9x 10°m.u. is equal to 7%
for the deterministic design and 1% for the stochastic one. maximising theE[NPV]. To achieve such goal, the model
With regard to the SC configurations, which are also givenin is solved for different values of, (oo, 6, 500, 2, 000 and
Fig. 15 it can be observed that the stochastic design exhibits 250 m.u.). In all these cases holdiag= 37%. The result-
lower capacities and it is thus able to cover less demand thaning mathematical formulation has 110,046 single equations,
the deterministic one. Such conservative design, whose con-398,230 continuous variables and 13 binary variables, and
sequences can be observed in the risk curves, tries to reducé also implemented in GAMSB{ooke et al., 1988and
the impact of the high uncertainty associated to the market solved using CPLEX 7.0. The time required to obtain so-
of Moscow, which finally leads to a highé&{NPV] with re- lutions with 0% integrality gap on a AMD Athlon 3000
spect to its deterministic counterpart (11,242,919 m.u. for the computer ranges from 7200 to 28,800s depending on the
deterministic SC and 11,836,501 m.u. for the stochastic one).target imposed to the downside risk calculation. By apply-
ing the proposed methodology, different Pareto solutions
are obtained. The corresponding risk curves of such solu-
5.4. Risk management tions are depicted ifrig. 16together with the deterministic
Pareto solution, i.e., the one obtained for the mean scenario
In this section, the financial risk has been considered. with MDSat= 37%.

80+

k (%)

50+
40+

Inanc

E

30+

NPV (m.u.) x 10

The resulting multiobjective problem (maximiggNPV], As it can be observed, when the downside risk is con-
maximise MDSat and minimise DRisk) has been solved by strained,E[NPV] is reduced (Fig16), thus moving the fi-
following the methodology described before. nancial risk curves to the left at the top of the curve and

Therefore, for a MDSat 37%, it is aimed to reduce decreasing the probability of low NPVs. For instance, there
the downside risk for a targe® = 9 x 10° m.u. while is a 7% probability of profits bellow % 10°m.u. in the
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Deterministic Pareto solution (MDSat = 37 %) Stochastic Pareto solution (MDSat = 37 %

DRiSk(Q"]OG) = 72762 m.u. DRiSk(Q"]OG} = 25292 m.u.
Ba LIl Balll Balllll  Balll
200000 160000 200000 160000

Mi Mi [ i B Mi

80000 60000 80000 60000

Mo Ll Mol Mot Mo

229271 116250 206670 118140
DRiSk(9'10E’) = 6500 m.u. (MDSat = 37 %) DRiSk(9'106) = 2000 m.u. (MDSat = 37 %)
Ballll Ball Ba" ' Bal

200000 160000 200000 160000

Mi ' Mi. i Mi‘ Mi B

80000 60000 80000 60000

Mo L0 . Mol Mol Mo

188244 111539 182302 117774

DRisk(9-10%) = 250 m.u. (MDSat = 37 %)

Balll Ba
200000 160000
Mi [0 Mi [
80000 60000
Mo L1 Mol

171713 118594

Fig. 17. Designs of the risk Pareto solutions for MDS&87%.

deterministic solution (DRisk= 72, 762 mu.) and a 4% in for the nominal case, but also when there is uncertainty about
the stochastic one (DRisk 25, 292 mu.), while such prob- some of the parameters defining the production/distribution
ability is reduced to 3%, 2%, and 1% in the solutions with scenario.
DRisk = 650Q 2000 and 250 m.u., respectively. These cu-  In this case, a Pareto stochastic curve can be obtained and
mulative probability curves clearly intersect, at least in one the comparison with the equivalent deterministic one has
point, the stochastic optimal curve computed without con- demonstrated the convenience of using the stochastic for-
straining the downside risk. mulation. The effects of these uncertainty can be accounted
The SC configurations associated to each of the afore-as a risk associated to the NPV of the investment, which has
mentioned risk curves are also depictedFig. 17. Such been introduced as an additional objective into the model.
designs show how in order to reduce the financial risk, the Then, this risk can be managed to reduce the probability of
formulation is forced to reduce the capacity of the plant and having low earnings derived from the investment.
warehouse located in the most uncertain market (Mo). This The interaction between the design objectives has been
strategy avoids low earnings but on the other hand it leadsshown. This way of generating different possible configura-
to poorer chances of high benefits. tions will help the decision-maker determine the best design
according to the selected objectives.

6. Conclusions

Notation

Determining the optimal SC configuration is a difficult
problem since a lot of factors and objectives must be taken A; binary variable 4; =1 if i is openedA; =0
into account when designing the network. Therefore, the otherwise)
multiobjective approach developed in this paper seems to AlL ,;,; average inventory level gf atj duringtin s
be the best way of capturing the high complexity of this B; binary variable B; =1if j is openedB; =0
problem. otherwise)

By using this methodology, the trade-off between the con- CF cash flow during in s

sidered objectives (Pareto curve) can be obtained not only CI capital investment
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DE;s
Dempkts
Deg
DRisk(x, Q)

DSat;
E[DSaf
E[NPV]
FCI
o
WHj
HC);
ir
1y
IEfi
WHj
IE,
IV s
MDem,x;
MDSat
nd
NPV
NPV,
PCap
PCagy
PCay/
Price,i;
prob
Qpits
Rev
Risk(x, Q)
Salesgs
SV
tr
-
Tax
TC1,;;
TC2,jk
VC,;
wWC
WHCapj
WHCap:
WHCapé’
X
Xpijts

ijkts

s

Greek letters

ocpi

B PJ
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direct expenses duringin s

demand ofp atk duringtin s

amount depreciated in

downside risk associated with designat
target levelQ2

total demand satisfaction durirign s
expected demand satisfaction

expected net present value

fixed capital investment

fixed cost parameter at

fixed cost parameter at

unit handling cost op at]j

interest rate

unit inventory cost op atj

indirect expenses parameteri at

indirect expenses parameterj at

indirect expenses during

amount ofp kept atj duringtin s

mean demand gb at k duringt

demand satisfaction

number of time intervals for depreciation
net present value

net present value in s

capacity ofi

lower capacity bound af

upper capacity bound of

price ofp atk duringt

probability ofs

amount ofp produced at duringt in s
revenues in s during

risk associated with desigmat target level2
sales of producp atk in s duringt
salvage value

taxes rate

number of time intervals in the time horizon
taxes in s durind

unit transport cost op between andj

unit transport cost op between andk
unit production cost op ati

working capital

capacity ofj

lower capacity bound gf

upper capacity bound ¢f

generic design variable

amount ofp transported from to j duringt
ins

amount ofp transported fronj to k duringt
ins

binary variable {;, =1 if NPV, < Q, z, =0
otherwise)

production capacity factor gf at
storage capacity factor gf at

Y pi fixed cost coefficient ait

ywu, fixed cost coefficient ajt

O auxiliar variable for downside risk definition
£0 bound level for 0

Npi indirect expenses coefficient iat
nwrj indirect expenses coefficient jat
Aj turnover inventory rate gt

u working capitalfactor

Q aspiration target level of profit
Subscripts

i plants

j warehouses

k markets

0 objectives

p products

S scenarios

t time intervals

Superscripts

L lower bound of the variables
U upper bound of the variables
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