Vu, T.V., and D.V. Papavassiliou, “Modification of oil-water interfaces by surfactant-stabilized carbon nanotubes,” J. Phys. Chem. C, a122, 27734-27744, 2018; DOI: 10.1021/acs.jpcc.8b08735
Vu, T.V., and D.V. Papavassiliou “Oil-water interfaces with surfactants: a systematic approach to determine coarse-grained model parameters,” J. Chem. Phys., 148, Art. 204704 (11 pages) 2018; DOI: 10.1063/1.5022798
Nguyen, Q., and D.V. Papavassiliou, “Quality measures of mixing in turbulent flow and effects of molecular diffusivity,” Fluids,3, Art. 53 (16 pages), 2018; DOI: 0.3390/fluids3030053
Gong, F., Wang, W., Li, H., Xia, D., and D.V. Papavassiliou, “Predictions of the thermal conductivity of multiphase nanocomposites with complex structures,” Journal of Materials Science, 53(17), 12157-12166, 2018; DOI: 10.1007/s10853-018-2486-y
Xia, D., Gong, F., Pei, X., Wang, W., Li, H., Zeng, W., Wu, M., and D.V. Papavassiliou, “Molybdenum and tungsten disulfides-based nanocomposite films for energy storage and conversion: A review,” Chem. Eng. J., 348, 908-928, 2018; DOI: 10.1016/j.cej.2018.04.207
Nguyen, Q., and D.V. Papavassiliou, “Scalar mixing in anisotropic turbulent flow,” AIChE Journal, 64(7), 2803-2815, 2018; DOI:10.1002/aic.16104
Gong, F., Ding. Z., Fang, Y., Tong, C-J, Xia D., Lv, Y., Wang, B., Papavassiliou, D.V., Liao, J., and M. Wu, “Enhanced electrochemical and thermal transport properties of graphene/MoS2 heterostructures for energy storage: Insights from multi-scale modeling” ACS Applied Materials & Interfaces, 10, 14614-14621, 2018; DOI:10.1021/acsami.7b19582
Gong. F., Li, H., Wang, W., Xia, D., Liu, Q., Papavassiliou, D.V., and Z. Xu “Recent advances in graphene based free-standing films for thermal management: synthesis, properties and applications,” Coatings, 8 Art. 63 (17 pages) , 2018; DOI: 10.3390/coatings8020063
Pham, N.H., and D.V. Papavassiliou, “Hydrodynamic effects on the aggregation of nanoparticles in porous media,” Int. J. Heat Mass Transf., 121, 477-487, 2018; DOI: 10.1016/j.ijheatmasstransfer.2017.12.150
Gong, F., Liu, X., Yang, Y., Xia D., Wang, W., Duong, H.M., Papavassiliou, D.V., Xu, Z., Liao, J., M. Wu, “A Facile Approach to Tune the Electrical and Thermal Properties of Graphene Aerogels by Including Bulk MoS2,” Nanomaterials, 7(12), Art. 420 (11 pages), 2017; DOI:10.3390/nano7120420
Pham, N.H., and D.V. Papavassiliou, “Effect of spatial distribution of porous matrix surface charge heterogeneity on nanoparticle attachment in a packed bed,” Phys. Fluids, 29(17), Art. 082007 (10 pages), 2017; DOI: 10.1063/1.4999344
Nguyen, Q., Feher, S., and D.V. Papavassiliou, “Lagrangian Modeling of Turbulent Dispersion from Instantaneous Point Sources at the Center of a Turbulent Flow Channel,” Fluids, 2(3), Art. 46 (12 pages), 2017; DOI: 10.3390/fluids2030046
Vo, M.D., and D.V. Papavassiliou, “Interaction between polymer-coated carbon nanotubes with coarse-grained computations,” Chem. Phys. Lett., 685(1), 77-83, 2017; DOI: 10.1016/j.cplett.2017.07.037
Vo, M.D., and D.V. Papavassiliou, “Effects of Temperature and Shear on the Adsorption of Surfactants on Carbon Nanotubes,” J. Phys. Chem. C, 121(26), 14339–14348, 2017; DOI: 10.1021/acs.jpcc.7b03904
Gong, F., Liu, J., Yang J., Qin, J., Yang, Y., Feng, T., Liu, W., Duong, H.M., Papavassiliou, D.V., and M. Wu, "Effective thermal transport properties in multiphase biological systems containing carbon nanomaterial," RSC Advances, 7(22), 13615-13622, 2017; DOI: 10.1039/c6ra27768c
Heck M.L., Yen, A., Snyder, T.A., O’Rear E.A., and D.V. Papavassiliou, “Flow-field simulations and hemolysis estimates for the Food and Drag Administration Critical Path initiative centrifugal blood pump,” Artificial Organs, 41(10), 129-E140, 2017; DOI: 10.1111/aor.128372017
Pham, N.H., and D.V. Papavassiliou, “Nanoparticle transport in heterogeneous porous media with particle tracking numerical methods,” Computational Particle Mechanics, 4(1), 87-100, 2017; DOI: 10.1007/s40571-016-0130-7
Ozturk, M., O’Rear, E.A., and D.V. Papavassiliou., “An approach to assessing turbulent flow damage to blood in medical devices.,” ASME Journal of Biomechanical Engineering, 139(1), Art. 011008 (8 pages), 2017; DOI: 10.1115/1.4034992
Nguyen, Q. and D.V. Papavassiliou, “A statistical model to predict streamwise turbulent dispersion from the wall at small times,” Physics of Fluids, 28(12), Art. 125103 (22 pages), 2016; DOI: 10.1063/1.4968182
Alam, T., Pham, Q.L., Sikavitsas, V.I., Papavassiliou, D.V., Shambaugh, R.L. and R. Voronov, “Image-based modeling: A novel tool for realistic simulations of artificial bone cultures,” Technology, 4(4), 1-5, 2016; DOI:10.1142/S233954781620003X
Ozturk, M., O’Rear, E.A., and D.V. Papavassiliou., “Reynolds stresses and hemolysis in turbulent flow examined by threshold analysis,” Fluids, 1(4), Art. 42 (18 pages), 2016; DOI:10.3390/fluids1040042
Vo, M., and D.V. Papavassiliou, “The effects of shear and particle shape on the physical adsorption of polyvinyl pyrrolidone on carbon nanoparticles" Nanotechnology, 27(32), Art 325709, 2016
Pham, N.H., Chen, C., Shiau, B., Harwell, J.H., Resasco, D.E., and D.V. Papavassiliou, “Transport and deposition kinetics of polymer-coated multiwalled carbon nanotubes in packed beds,” AIChE J. 26(10), 3774-3783, 2016
Vo, M., and D.V. Papavassiliou, “Physical adsorption of PVP Polyvinyl Pyrrolidonepolymer on CNTs Carbon Nanotubes under shear studied with Dissipative Particle Dynamics simulations,” Carbon, 100, 291-301, 2016
Gong, F., Duong, H.M. and D.V. Papavassiliou “Review of recent developments on using an Off-lattice Monte Carlo approach to predict the effective thermal conductivity of composite systems with complex structures,” Nanomaterials, 6(8), Art 142, 14 pages, 2016
Vo, M., Shiau, B., Harwell, J.H., and D.V. Papavassiliou, “Adsorption of anionic and non-ionic surfactants on Carbon nanotubes in water with Dissipative Particle Dynamics simulation,” Journal of Chemical Physics, 144 (20), Art. 204701 (16 pages), 2016
Nguyen, Q., Srinivasan, C., and D.V. Papavassiliou, “Flow induced separation in wall turbulence”, Phys Rev E, 91, 033019, 2015
Gong, F., K., Papavassiliou, D.V., and H.M. Duong, “Thermal transport phenomena and limitations in heterogeneous polymer nanocomposites containing Carbon Nanotubes and inorganic nanoparticles,” J. Phys. Chemistry C, 119(14), 7614-7620, 2015
Ozturk, M.,O’Rear, E.A., and D.V. Papavassiliou, “Hemolysis related to turbulent eddy size distributions using comparisons of experiments to computations,” Artificial Organs, 39(12), E213-E226, 2015
Gong, F., Bui, K., Papavassiliou, D.V., and H.M. Duong, “Thermal transport phenomena and limitations in heterogeneous polymer nanocomposites containing Carbon Nanotubes and inorganic nanoparticles,” Carbon, 78, 305-316, 2014
Pham, N., Voronov,R.S., Tummala,N.R. and D.V. Papavassiliou, “Bulk stress distributions in the pore space of sphere-packed beds under Darcy flow conditions,” Phys. Rev. E, 89(3), Art 033016 (13 pages), 2014
Pham, N., Swatske, D.E., Harwell, J.H., Shiau, B.-J., and D.V. Papavassiliou, “Transport of nanoparticles and kinetics in packed beds:A numerical approach with lattice Boltzmann simulations and particle tracking,” Int. J. Heat and Mass Transfer, 72, 319-328, 2014
Nguyen, Q.T., and D.V. Papavassiliou, “Turbulent plane Poiseuille-Couette flow as a model for fluid slip over superhydrophobic surfaces,” Phys. Rev. E, 88 (6), 063015 (11 pages), 2013
Srinivasan, C., and D.V. Papavassiliou, “Heat transfer scaling for wall bounded turbulent flows,” Applied Mechanics Reviews, 65(3), Art. 031002 (20 pages), 2013
Srinivasan, C., and D.V. Papavassiliou, “Direction of scalar transport in turbulent channel flow,” Physics of Fluids, 23(11), 115105, 21 pages, 2011
Ho, T.A., Papavassiliou, D.V., Lee, L.L., and A. Striolo, “Liquid Water Can Slip on Hydrophilic Surfaces” Proceedings of the National Academy of Sciences of the USA 108(39), 16170-16175, 2011
Voronov, R., Papavassiliou, D.V., and L.L. Lee, “A review of fluid slip over superhydrophobic surfaces and its dependence on contact angle,” Ind. Eng. Chem. Res., 47(8), 2455-2477, 2008.
Mitrovic, B.M., Le, P.M., and D.V. Papavassiliou, “On the Prandtl or Schmidt number dependence of the turbulence heat or mass transfer coefficient,” Chem. Eng. Sci., 59(3), 543-555, 2004