School of Computer Science M.S. Thesis Defense

By Kiran K. Kafle

ADAPTIVE ART THROUGH ASYMMETRIC HEBBIAN LEARNING

ABSTRACT

Interactive art is an art form in which the art piece explicitly responds in some way to the presence or actions of a viewer. The viewer thus becomes a participant in the art making process. The interaction of most pieces is defined by a set fixed of rules. In this thesis, I propose an approach to interaction in which the participant can shape the behavior of the piece for a duration that extends beyond the interaction session. This approach is demonstrated using a simulation of a set of sensor network nodes. In my approach, each node behaves as a leaky integrate-and-fire model of a neuron. Synaptic connections between nodes are established through a modified Hebbian learning algorithm that combines Abbott and Song's spike time dependent plasticity with Bienenstock et.al's sliding threshold theory The distributed learning algorithm allows a visitor to easily configure short pathways through a set of neurons. In addition, the algorithm maintains the behavior of the network in a moderate state of varying activity, that is neither quiescent nor saturated. I demonstrate the viability of the learning algorithm through a series of small-scale simulation experiments.

Date: Wednesday, April 13, 2011

Time: 10:00 A.M. – 11:00 A.M.

Place: Seminar Room, SRTC

Committee members: Dr. Andrew H. Fagg – Chair

Dr. Dean Hougen Prof. Adam Brown

Reading Copy available in Computer Science Graduate Assistant's office DEH 105

For accommodations on the basis of disability, please call 325-4042.