Interactions and Sample Comparisons with Categorical Models: Understanding and Applying the New ASR Standards

Professor Cyrus Schleifer - OU Sociology

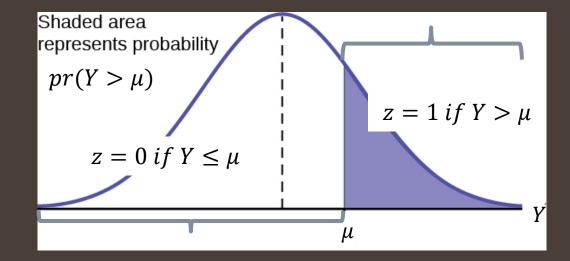
New ASR Guidelines

- American Sociological Review (ASR)
 published guidelines for Quantitative
 Journal Submissions:
 - 1. P-values of where p < 0.10 will no longer be considered strong evidence
 - 2. That mediation and moderation language needs to be accompanied by appropriate test
 - 3. The language of multiple regression, multivariable regressions, multivariate regressions needs to be used accurately
 - 4. That sociologists need to take quantitative measurement issues more seriously
 - Method sections need to be more organized and logically coherent

Interactions in Categorical Models

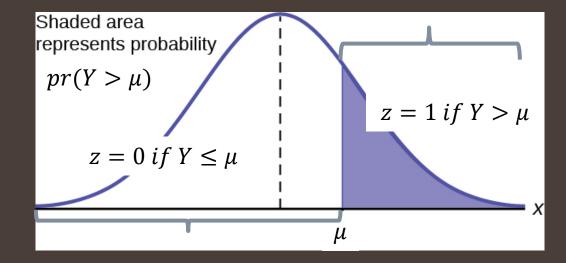
- 6. Comparing groups with interactions and/or comparing coefficients across models with categorical outcomes:
 - "Various problems have been raised with using zstatistics (and associated p-values) of the coefficients of a multiplicative term to test for a statistical interaction in nonlinear models with categorical dependent variables"
 - "The case is closed: don't use the coefficient of the interaction term to draw conclusions about statistical interactions in models such as logit, probit, Poisson, and so on."

- The coefficients in binary regression models are confounded with residual variations
 - Unobserved Heterogeneity
- Differences in the degree of residual variations across groups can produce apparent differences in coefficients that "<u>are not</u> <u>indicative of true difference in causal effect</u>."



- Latent Variable approach
 - We can imagine the binary variable z is equal to 1 if $Y>\mu$
 - and equal to 0 if $Y \leq \mu$
- We might model the latent propensity with a linear model

$$y_i = \alpha_0 + \alpha_1 x_{i1} + \dots + \alpha_j x_{ij} + \sigma \varepsilon_i$$



$$y_i = \alpha_0 + \alpha_1 x_{i1} + \dots + \alpha_j x_{ij} + \sigma \varepsilon_i$$

- Here, the α 's represent the parameters we are estimating (intercept and coefficients)
- The ε_i is the random disturbance (error) that is assumed to be independent of the x variables with a fixed variance.
- ullet And σ is a parameter the fixes the $arepsilon_i$

• If we assume that the ε_i has a standard logistic distribution, it follows that the observed dichotomy z is governed by the logit model

$$g[pr(z_i = 1)] = \beta_0 + \beta_1 x_{i1} + \dots + \beta_j x_{ij}$$

- where $g(p) = \ln(\frac{p}{1-p})$, which is the logit "link" function
- Notice that here, we are estimating beta (β) parameters, as opposed to alphas (α)
- Also notice, that for this regression we do not have an error term

• We can relate the β coefficients from the logistic equation to the α coefficient from the linear regression:

$$\beta_0 = \frac{(\alpha_0 - \mu)}{\sigma}$$
 for the Intercept

$$\beta_j = \frac{\alpha_j}{\sigma} \text{ for } j = 1, ..., j \text{ covariates}$$

- The problem is that the logistic coefficients are a product of the coefficient from imagined latent model of the propensities (α_j) and the parameter (σ) that we used to adjust the disturbance variance
- When we compare models using linear regressions, we compare:

$$H_0$$
: $\alpha_{jg1} = \alpha_{jg2}$

- This includes comparing across models (through we need to adjust for different standard error - sample size - here)
- For interaction comparison it becomes:

$$H_0: \alpha_{main\ effect} = (\alpha_{main\ effect} + \alpha_{interactive\ effect})$$

 However, when we compare models using categorical regressions, we compare:

$$H_0: \beta_{jg1} = \beta_{jg2} : \frac{\alpha_{jg1}}{\sigma_{g1}} = \frac{\alpha_{jg2}}{\sigma_{g2}}$$

• Notice, that here for the comparison to work in the same way as for the linear regression model, we must assume variance parameter for group 1 (σ_{g1}) and the variance parameter for group 2 (σ_{g2}) are equal.

$$ie$$
: $\sigma_{g1} = \sigma_{g2} = \sigma$

• This assumption is problematic and, when violated, could lead to spurious conclusions

Damn You Math

- What does this all mean:
 - Interaction coefficients from categorical regression models pose a problem
 - Cannot trust your stars in your tables
 - Care is needed when comparing coefficients across categorical models
 - Standard model comparison tests do not work under these conditions

Approaches to Address the Issue

- Luckily, several prominent social statisticians have set about developing approaches that avoid this issue and allow for comparison
 - 1. Adjusting for Unequal Residual Variation– Allison (1999)
 - 2. Choice Models Richard Williams (2009)
 - 3. Comparing Probabilities Long and Mustillo (2018)

Adjusting for Unequal Residual Variation

- Allison 1999 proposed a way forward
- Since the model is not identified if we allow both the coefficients and variance disturbance to differ across group, we can not model this issue directly
- If, however, we are willing to assume that one (or more) X variables has the same underlying coefficient (α), we can estimate the ratio of the disturbance variances

$$\frac{\beta_{2m}}{\beta_{2w}} = \frac{\alpha_{2m}/\sigma_m}{\alpha_{2w}/\sigma_w} = \frac{\sigma_m}{\sigma_w}$$

if we assume: $\alpha_{2m} = \alpha_{2w}$

Adjusting for Unequal Residual Variation

• If G_i is a binary grouping variable (here men and women) then our linear regression becomes:

$$y_i = \alpha_0 + \alpha_1 G_i + \sum_{j>1} \alpha_j x_{ij} + \sigma_i \varepsilon_i$$
 where $\sigma_i = \frac{1}{1 + \delta G_i}$

 With a touch of mathematical fanciness, our logit regression becomes:

$$\ln\left(\frac{p}{1-p}\right) = (\alpha_0^* + \alpha_1 G_i) + \sum_{j>1} \alpha_j x_{ij})(1+\delta G_i)$$

Adjusting for Unequal Residual Variation

TABLE 2: Logit Regressions Predicting Promotion to Associate Professor for Male and Female Biochemists, Disturbance Variances Unconstrained

	All Coefficients Equal		Articles Coefficient Unconstrained	
Variable	Coefficient	SE	 Coefficient	SE
Intercept	7.4913***	.6845	-7.3655***	.6818
Female	-0.93918**	.3624	-0.37819	.4833
Duration	1.9097***	.2147	1.8384***	.2143
Duration squared	-0.13970***	.0173	-0.13429***	.01749
Undergraduate selectivity	0.18195**	.0615	0.16997***	.04959
Number of articles	0.06354***	.0117	0.07199***	.01079
Job prestige	-0.4460***	.1098	-0.42046***	.09007
δ	0.26084*	.1116	-0.16262	.1505
Articles × Female		1	-0.03064	.0173
Log likelihood	-836.28		835.13	

^{*}p < .05. **p < .01. ***p < .001.

- The problem with Allison's approach, is that the choice of which coefficient to fix can effect the conclusions we draw
- Williams (2009) notes that Allison's proposed solution is part of a larger class of models know as the heterogeneous choice models
- He argues that the more generalized approach should be preferred because it does not require the same key assumptions

The Heterogeneous choice model take the following form:

$$\Pr(y_i = 1) = g\left(\frac{x_i\beta}{\exp(z_i\gamma)}\right) = g\left(\frac{x_i\beta}{\exp(\ln(\sigma_i))}\right) = g\left(\frac{x_i\beta}{\sigma_i}\right)$$

- Where g is the link function
- X is a vector of predictors
- Z is vector of the different error variance

- There are a number of advantage of this class of models
 - Can yield information even when coefficients do not vary across groups
 - Estimate variance equation across multiple grouping variable
 - Variance estimate could be of substantive interest
 - Estimates on ordinal outcomes
 - General increase in model flexibility

Table 3 Comparison of Allison (1999) and Heteroscedastic Logit Models

	Allison		Heteroscedastic Logit	
	Coefficient	SE	Coefficient	SE
Got promoted $(1 = yes, 0 = no)$				
Female	-0.939*	0.37	-0.939*	0.37
Duration	1.910***	0.20	1.910***	0.20
Duration squared	-0.140***	0.017	-0.140***	0.017
Undergraduate selectivity	0.182***	0.053	0.182***	0.053
Number of articles	0.0635***	0.010	0.0635***	0.010
Job prestige	-0.446***	0.097	-0.446***	0.097
Intercept	-7.491***	0.66	-7.491***	0.66
δ	-0.261*	0.11		
$ln(\sigma)$				
Female			0.302*	0.15
N	2,797		2,797	

^{*}p < .05. ***p < .001.

Probabilities

• Scott Long and Sarah Mustillo (forthcoming – Online 2018) proposed that comparing the predicted probabilities - as opposed to the coefficient - is a way forward on this issue.

Probabilities

- "Tests of the equality of probabilities or marginal effects on the probability do not require additional assumptions since identical predictions are obtained using the α 's and the β 's"
- From Linear regression:

Group 0:
$$Pr(Y = 1|x_1, x_2) = {Pr \choose 0} (\varepsilon \le \alpha_0^0 + \alpha_1^0 x_1 + \alpha_2^0 x_2 | x_1, x_2)$$

Group 1: $Pr(Y = 1|x_1, x_2) = {Pr \choose 1} (\varepsilon \le \alpha_0^1 + \alpha_1^1 x_1 + \alpha_2^1 x_2 | x_1, x_2)$

From Logit regression

Group 0:
$$Pr(Y = 1|x_1, x_2) = \frac{Pr}{0} (\varepsilon \le \beta_0^0 + \beta_1^0 x_1 + \beta_2^0 x_2 | x_1, x_2)$$

 $Fr(Y = 1|x_1, x_2) = \frac{Pr}{1} (\varepsilon \le \beta_0^1 + \beta_1^1 x_1 + \beta_2^1 x_2 | x_1, x_2)$

Probabilities

- This has several advantages, including:
 - Overcoming the issue of the error disturbance allowing for group comparison
 - Placing the tested effect back on the original scale of interest
 - Quick and easy approaches to graphically displaying the difference
 - Allows for similar model specifications, with straight forward post estimation tests of the probability difference across group

Other Approaches

- These three approaches are not an exhaustive list
 - Hard Coding Interactions
 - Y-standardization
 - Linear probability Models
 - ΔP approaches
- Whatever approach one chooses, given that sociology relies heavily on categorical comparisons both theoretically and empirically we need to stay abreast of the different approaches to this concern

 Table 6
 Characteristics of estimated effects on binary dependent variables

Mood's
(2009)
Table

	Capture nonlinearity	across groups, samples etc.	Comparable across models	effect estimate ^a
Measures based on odds and log-odds				
Odds ratio	Yes	No	No	Yes
Log-odds ratio	Yes	No	No	Yes
y-standardization	Yes	No	Yes	No
Allison's procedure	Yes	Yes ^b	No	Yes
Heterogeneous choice models	Yes	Yes ^c	No	Yes
Measures based on percentages				
Average marginal effect	No	Yes	Yes	No
Average partial effect	Yes ^d	Yes	Yes	No
Marginal effect	Yes ^d	No	No	Yes
ΔP	Yes ^d	No	No	Yes
Linear probability model	No	Yes	Yes	No ^e

^aIn a multivariate model.

^bIf assumption that one variable has same effect in groups etc. is correct.

^cIf assumption about the functional form of the relationship is correct.

^dIf estimated at several places in the distribution.

eIf the true relationship is nonlinear.

STATA EXAMPLE

Comparing Probabilities