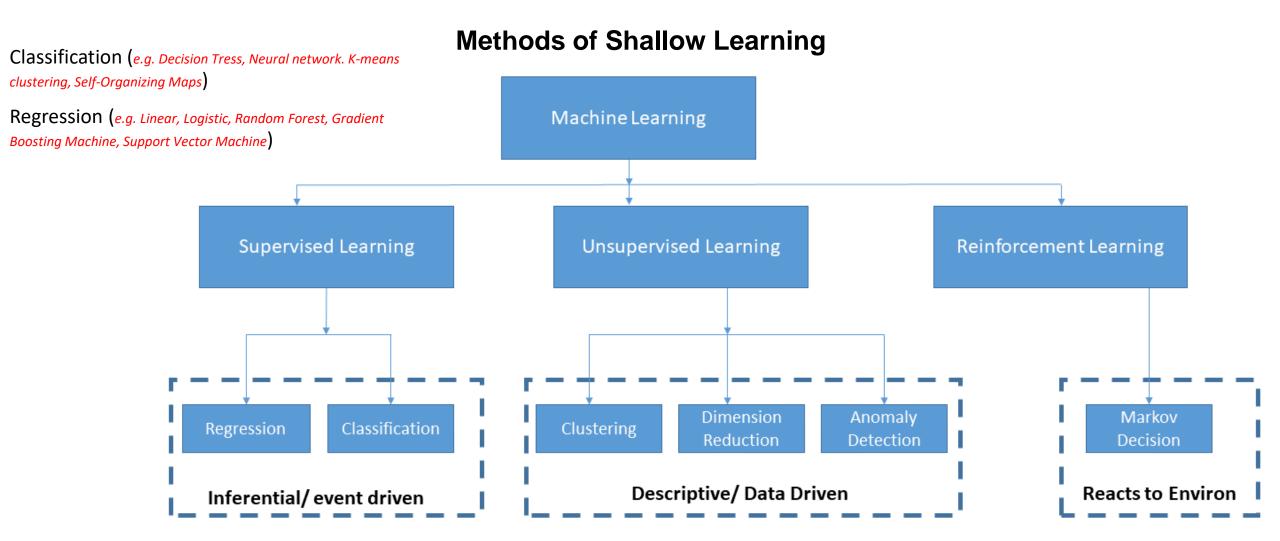
Adapting Shallow and Deep Learning Algorithms to Examine Production Performance – Data Analytics and Forecasting

Deepankar "Dee" Biswas President, ActiveReservoir LLC

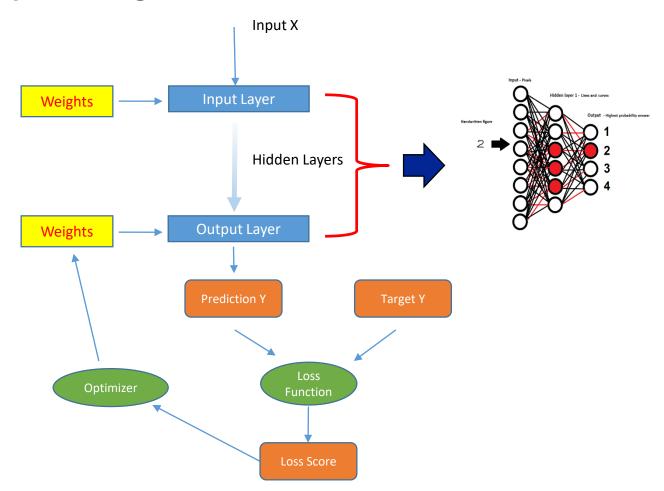
OUTLINE

- ➤ Shallow Learning A Closer Look
- ➤ Deep Leaning Nuts and Bolts
- Case Study I Production Performance in Delaware Basin
- Case Study II Decline Curve HM and Forecast



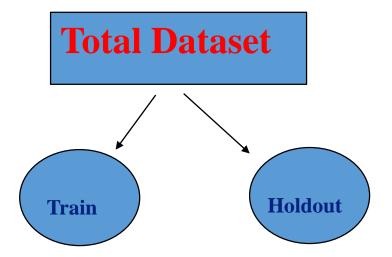
- ✓ Input layer data is fed in
- ✓ Output layer prediction
- ✓ Hidden layers neurons interconnected
- Red neurons amplify the values which activates the neuron it is feeding to by altering weights and biases
- ✓ This handover and gradual elimination process piece meals information for final task, e.g. image recognition
- ✓ Different layers build rough hierarchy of different features
- ✓ With each pass a loss function guides the optimizer to alter the magnitude and direction of weight change for the following pass
- ✓ All layers are updated simultaneously

Deep Learning Architecture



Machine Learning Moving Parts

- ✓ Problem Description Identifying features and targets
- ✓ Data Cleaning
- ✓ Feature Engineering (domain knowledge)
- ✓ Exploratory Data Analysis
- ✓ Model Selection
- ✓ Model Validation (k-fold, batches)
- ✓ Parameter Tuning Hyper Parameter Search
- ✓ Improving Predictive Capability
- ✓ Saving trained model and application on new datasets



Case Study I

Predicting Production Performance using Reservoir, Completion, Geology, Fluid Data - Wolfcamp Dataset

Dataset Description

Completion Variables (21)	
fracVendorName	range
jobStartDate	recompletionFlag
jobEndDate	refracFlag
materialSourceColumn	simulFrac
proppantConcentrationLbsPerBbl	spudDate
proppantLbsPerFoot	stages
producingMethod	totalAdditive
proppantMeshSize	totalAdditiveUOM
proppantType	totalProppantLbs
pumpType	treatmentType
quarterQuarter	

Fluid Vars (9)
gasGravity
grade
gradeGas
gradeOil
oilGravity
primaryProduct
testDryGasGravity
testOilGravity
totalFluidBbls

Production	າ Vars (53)
cum3MonthsBoe	firstGasOilRatio
cum3MonthsGas	firstProductionDate
cum3MonthsOil	lastGasOilRatio
cum3MonthsWater	lastProductionDate
cum6MonthsBoe	lastProductionGas
cum6MonthsGas	lastProductionOil
cum6MonthsOil	lastProductionWater
cum6MonthsWater	maxIpBoe
cum12MonthsBoe	maxIpGas
cum12MonthsGas	maxIpGasPending
cum12MonthsOil	maxlpOil
cum12MonthsWater	maxIpOilPending
cum24MonthsBoe	pracIPGasOilRatio
cum24MonthsGas	twentyFourHourBoe
cum24MonthsOil	twentyFourHourGas
cum24MonthsWater	twenty Four Hour Gas Oil Ratio
cum60MonthsBoe	twentyFourHourOil
cum60MonthsGas	twentyFourHourWater
cum60MonthsOil	twentyFourHourWaterOilRatio
cum60MonthsWater	peakProdDate
cumTotalGas	peak3monCumulativeGas
cumTotalOil	peak3monCumulativeOil
cumTotalWater	peak6monCumulativeGas
cumulative Gas Oil Ratio	peak6monCumulativeOil
EURGas	peak12monCumulativeGas
EUROil	peak12monCumulativeOil

first3MonthsGasOilRatio

Well Vars (22)	
lowerPerforation	
numberOfCompletions	
perfInterval	
perfIntervalSource	
surfaceCasingDepth	
tubingSize	
upperPerforation	
wellbore	
wellName	
wellNumber	
wellType	

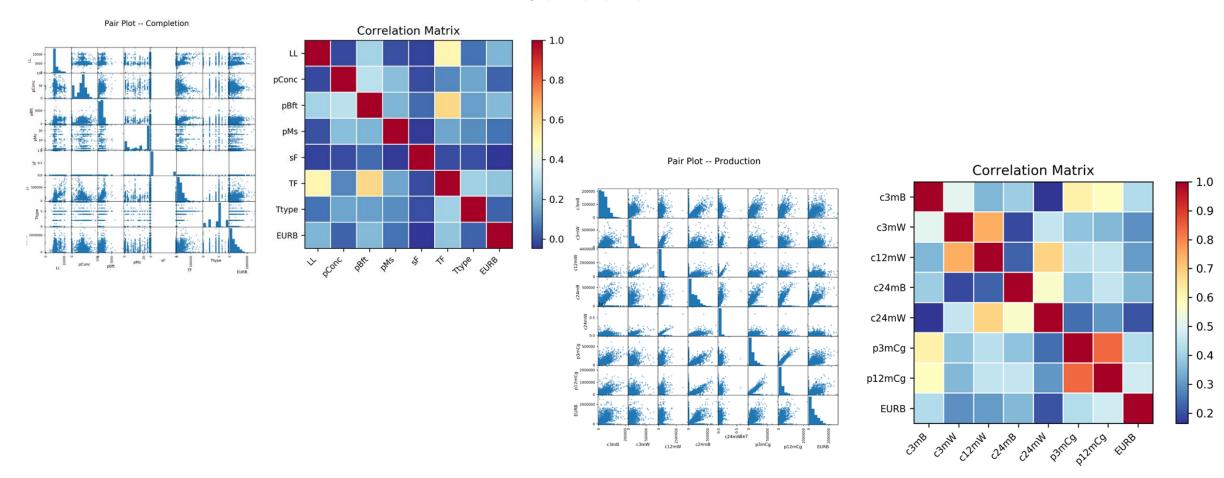
5716 horizontal wells131 predictors

Target – EUR BOE

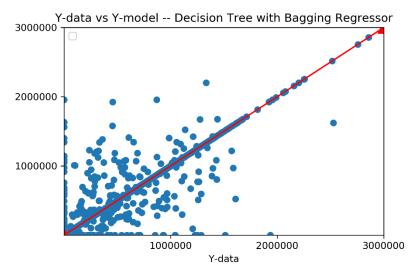
21 completion
9 reservoir fluid
53 production
26 reservoir
22 well architecture

Reservoir Vars (36)	
abstract	padDrill
allocFlag	play
basin	playArea
bottomHoleTemp	reservoir
bottomHoleTempDepth	reservoirAlias
county	section
field	state
geologyZone	survey
leaseName	testFormation
longitude27	totalDepth
nearNeighborFt	township
operator	tvd
outlierFlag	tvdSource

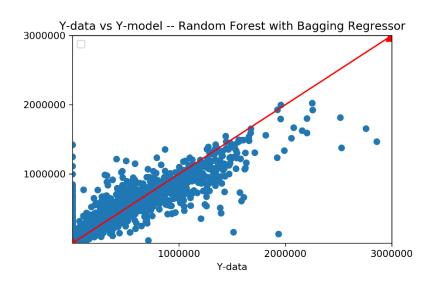
Correlation



Shallow Learning Results – DT vs RF



Decision Tree -- Bagging



Random Forrest -- Bagging

Short-Header

API BHT

BHTD

c3mB

c3mW

c6mB

c6mW

c12mB

c12mW

c24mB

c24mW

cTotB cTotG

cTotO

cTotW

cGOR

EURB

fGOR

SpGr LL

3mGOR

CS

Actual - Header

bottomHoleTemp

cum3MonthsBoe

cum6MonthsBoe

cum3MonthsWater

cum6MonthsWater

cum12MonthsBoe

cum24MonthsBoe

cum60MonthsBoe

cumTotalOil

EURBoe

gasGravity

lateralLength

cumTotalWater

firstGasOilRatio

cum12MonthsWater

cum24MonthsWater

cum60MonthsWater

cumulativeGasOilRatio

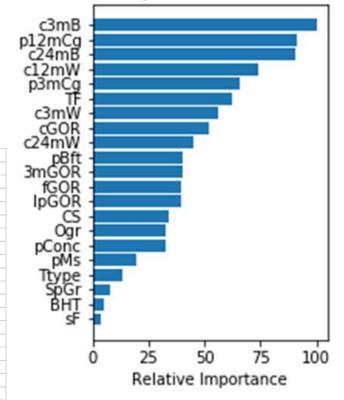
first3MonthsGasOilRatio

bottomHoleTempDepth

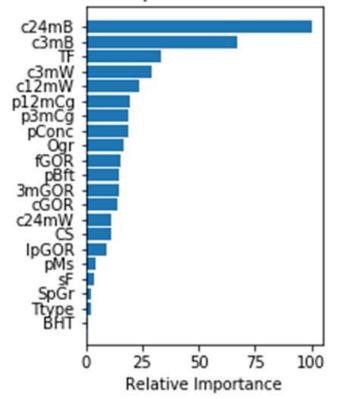
api10

chokeSize

Shallow Learning Results – Variables of Importance

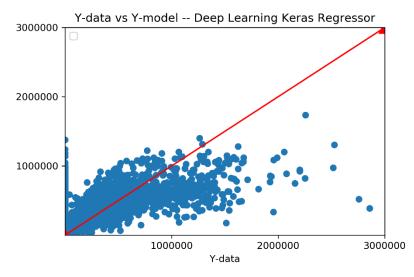


Variable Importance - Decision Tree

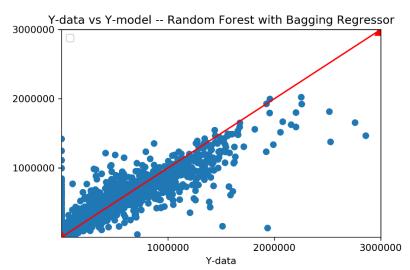


oilGravity	Ogr	
perfInterval	pL	
pracIPGasOilRatio	IpGOR	
proppant Concentration Lbs Per Bbl	pConc	
proppantLbsPerFoot	pBft	
proppantMeshSize	pMs	
proppantType	pT	
simulFrac	sF	
totalDepth	TD	
totalFluidBbls	TF	
totalProppantLbs	TPr	
treatmentType	Ttype	
tvd	TVD	
peak3monCumulativeGas	p3mCg	
peak3monCumulativeOil	p3mCo	
peak6monCumulativeGas	p6mCg	
peak6monCumulativeOil	p6mCo	
peak12monCumulativeGas	p12mCg	
peak12monCumulativeOil	p12mCo	

Results – DL (unoptimized) vs SL



Deep Learning – Keras Regressor

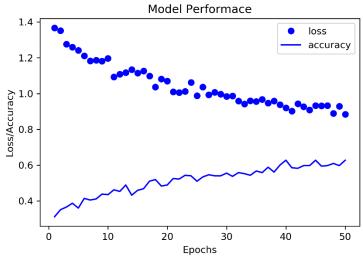


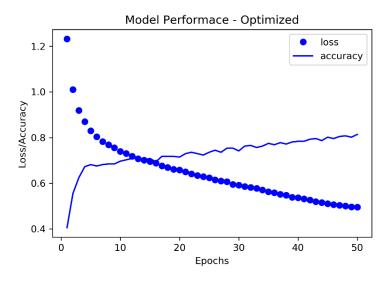
Random Forrest -- Bagging

Deep Learning Optimizing – Hyper Parameter Search

Parameter	Parameter Values
Name	
Activation	Softmax, softplus, softsign, relu, tanh, sigmoid, hard sigmoid,
	linear
Dropout	Dropout rate, weight constraint
Init mode	'uniform', 'lecun_uniform', 'normal', 'zero', 'glorot_normal',
	'glorot_uniform', 'he_normal', 'he_uniform'
Learning Rate	Learning rate, momentum, rho
Neurons	Number of neurons
Optimizer	'SGD', 'RMSprop', 'Adagrad', 'Adadelta', 'Adam', 'Adamax',
	'Nadam'

Deep Learning – How good is Optimization

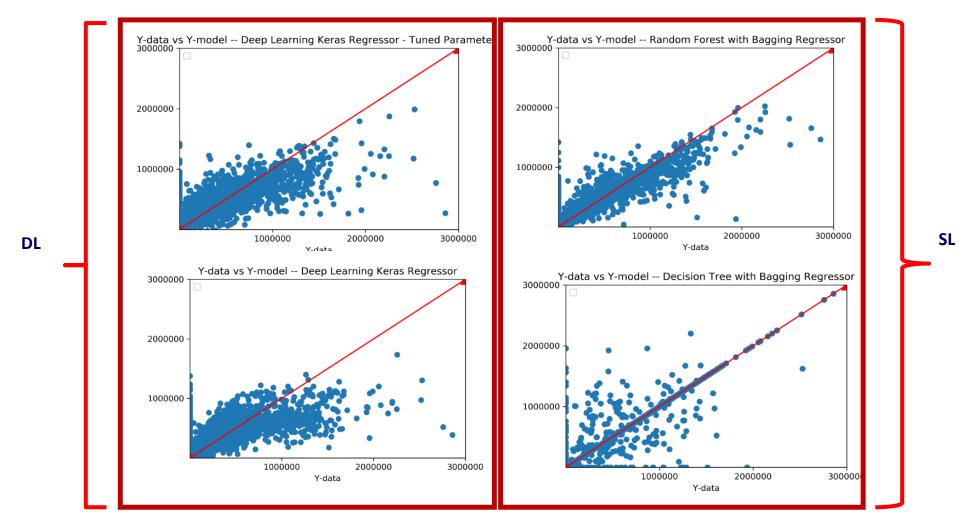




Model Performance

Model Performance - Optimized

Results – DL (Opt) vs SL



Case Study II

Using LSTM to Forecast Decline Curves - EagleFord Dataset

Methodology

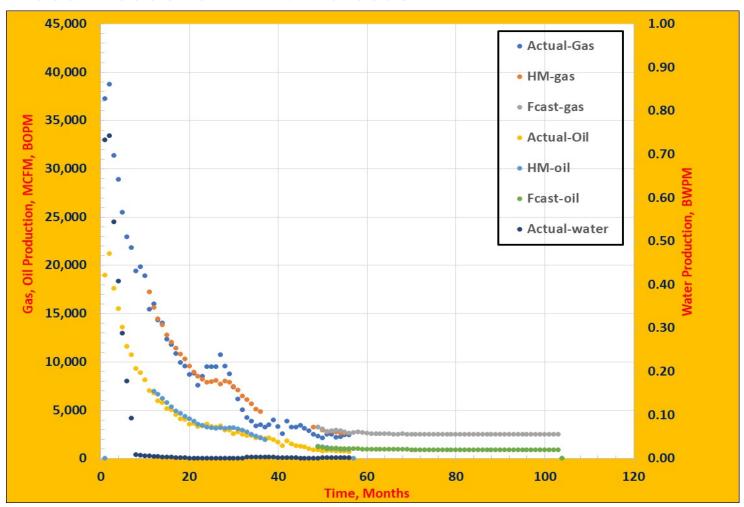
- Specialized Deep Learning Technique Long-Short Term Memory (LSTIM)
- The difference is it has memory and therefore good for time series data e.g. weather forecast, sales forecast, decline curves etc.
- ➤ LSTM is specialized form of RNN to process sequence data and output a sequence data
- > Types of LSTM Vanilla, Stacked, BiDirectional, CNN-LSTM
- Case Study II Three Phase Production Forecast of an Eagle Ford Horizontal Well

LSTM – 3 Phase Production HM & Forecast

- > 55 months of production
- > 2/3rd to HM, 1/3rd to hind cast
- **→** All three phase production forecast
- > n_step is the key parameter: number of past time steps used to forecast next step

Results sensitive to *n_step*

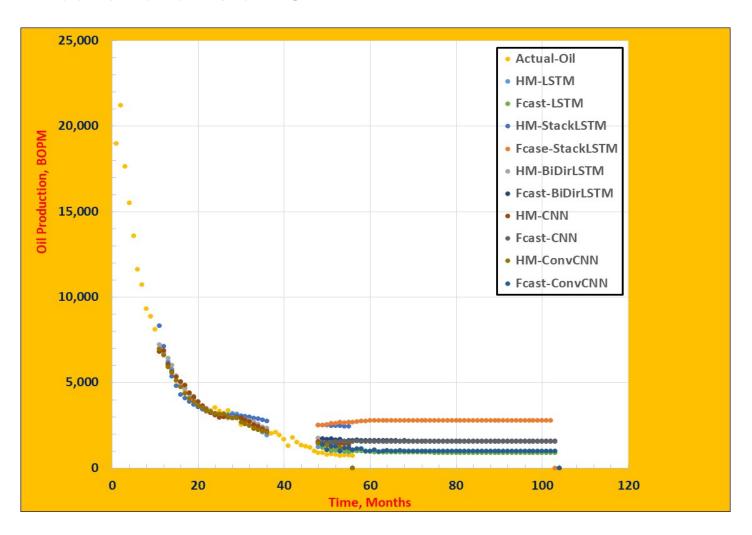
Adjoining figure $n_step = 10$



Sensitivities to Variants of LSTM

> Sensitive to type of LSTM

Adjoining figure $n_step = 10$



Summary and Conclusions

- Systematic approach to applying SL and DL methods are elaborated. The workflow consists of data prep, exploratory data analysis, model selection, model validation, model parameter tuning, selection of variable of importance, model application.
- ➤ SL (RF, DT, MLP with and without bagging) and DL methods are applied to a large Delaware basin data set in order to find relationship between the driver variables to predict target variables.
- > DL learning methods need parameter optimization to get better results. RF with bagging seems to outperform others.
- Feasibility of LSTM and its variants is investigated to HM and forecast a representative Eagle Ford well production. Although all methods perform good in HM data set but forecast performances differ. Therefore, parameter tuning is needed for better results.