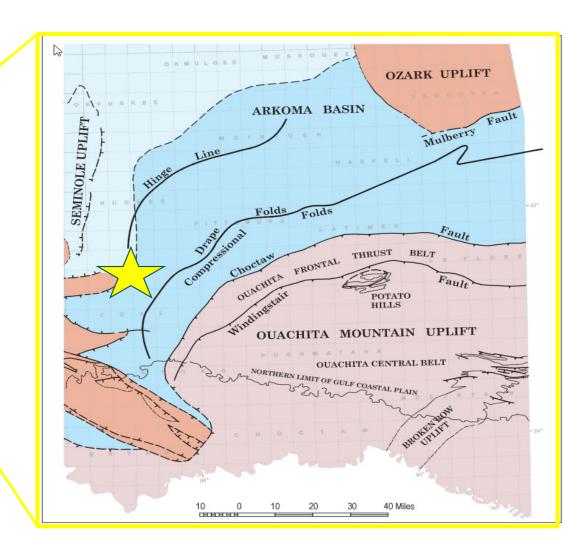


High Resolution Unconventional Reservoir Modeling of Devonian Strata in Oklahoma Utilizing Rock Volatile Analysis

Outline

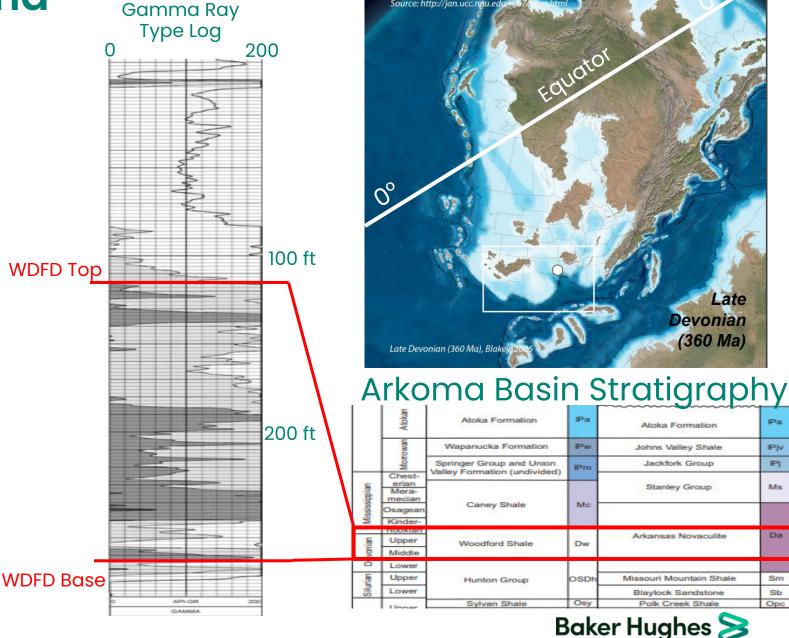
- Location Maps
- Geologic Background
- Structure & Reservoir Characteristics
- VAS Methods & Data Sets
- VAS Reservoir Modeling
- Conclusions



Location & Geologic Map

Western Arkoma Basin – Southeast OK

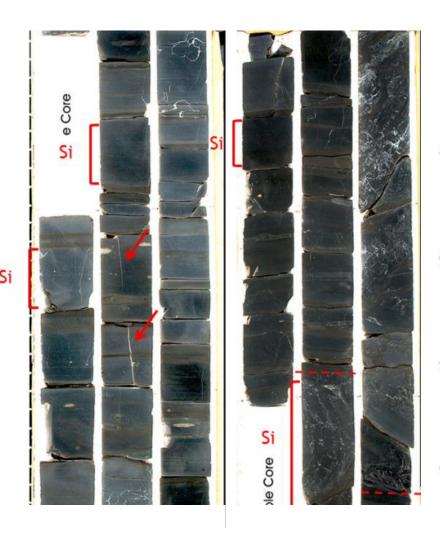
- Yellow Star/Box = AOI located in Hughes and Coal Co. OK.
- Complex faulting related to Pennsylvanian Ouachita Orogenic Event

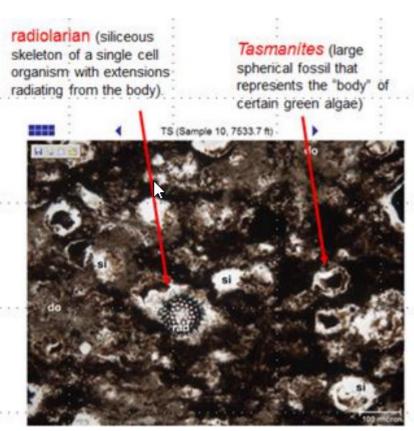


Geologic Background

Woodford Deposition

- Paleogeographic map during the Late Devonian – 360 Ma, AOI represented by white dot
- Project area located ~20° S latitude on the westward margin of Laurussia
- Red box = targeted stratigraphic interval, Devonian - Woodford (WDFD)
- Gamma Ray Type Log of the WDFD Formation with API units ranging between 100-650.
- Lower gamma ray intervals contain higher concentrations of silica-rich facies.
- Higher gamma ray intervals contain facies enriched in TOC, phosphate, and clay mineralogies




Source: http://jan.ucc.nau.edu/co/7/

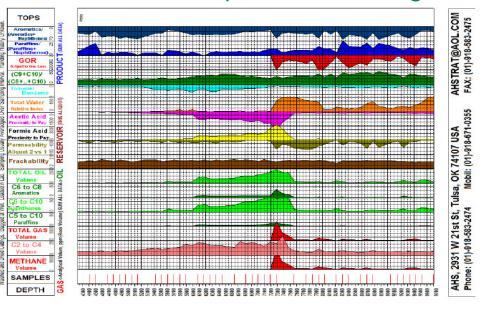
Reservoir Characteristics

WDFD Reservoir Facies

- Core photograph on the left demonstrating interbedded silica rich mudstones (Si brackets) with TOC-rich mudstones.
- Photomicrograph on the right demonstrating constituents of the Si-rich beds: abundant radiolarians and tasmanites.
- Dominated by biogenic silica rather than detrital quartz grains.
- Si-rich beds preferential fracture due to more brittle behavior than interbedded TOC-rich mudstones.

Modeling Data Sets

RNS & VAS Data Integration


- Baker Hughes Reservoir Navigation Services (RNS)
 - ✓ Well Surveys & Trajectories
 - ✓ Formation Tops along the lateral
 - √ Gamma Log along the lateral
 - ✓ Key structural observations faults, dips, etc.
- Arkoma Data 2D grids, offset well data (surveys/logs).
- VAS Data Sealed and Lab Loaded Analysis Sets
 - ✓ Comparison of like samples for accuracy
 Ex. sealed vs sealed samples, not sealed vs crush loaded samples
 - Y Sum all data used in reservoir modeling Total Gas Vol, Total Oil Vol, Permeability, Mechanical Strength, Acetic Acid
- Disclaimer: Following models based on data from 2 wells.

 Geologic uncertainty increases away from 2 sampled wells.

RNS Surveys & Reports

BAKER (B)		Company:					Jol	2		Calculation Method		Minimum Curvature		-	
BAK	ER &	Well:					Magne	Magnetic Decl.:			Proposed Azimuth		354.07		
HUGHES a GE company		Location:					Grid Corr.:			Depth Refe	erence	DF	Plan #	3	
		Rig:	Cactus 1	45			Total (Grid Corr.:			Tie Into:	Surface			
Survey	Survey	Inclina-			Course	True Vertical	Vertical		ordii	nates	Closure		Dogleg	Build	Walk
Tool	Depth	tion	Azimuth	Direction	Length	Depth	Section	N/S		E/W	Distance	Angle	Severity	Rate	Rate
Type	(ft)	(deg)	(deg)		(ft)	(ft)	(ft)	(ft)		(ft)	(ft)	(deg)	(d/100')	(d/100')	(d/100')
Tie In Coordinates															
Tie In	0.0	0.00	195.91	S 15.9 W	0	0.00	0	0.00	N	0		0	0	0	0
Gyro	23.0	0.00	195.91	S 15.9 W	23	23.00	0.00	0.00		0.00		0.00	0.00	0.00	0.00
Gyro	100.0	0.30	195.91	S 15.9 W	77	100.00	-0.19	0.19	S	0.06	V 0.20	195.91	0.39	0.39	0.00
Gyro	200.0	0.10	155.98	S 24.0 E	100	200.00	-0.51	0.53	S	0.09 \	V 0.53	189.88	0.23	-0.20	-39.93
Gyro	300.0	0.10	138.56	S 41.4 E	100	300.00	-0.67	0.67	S	0.00	0.67	179.85	0.03	0.00	-17.42
Gyro	400.0	0.23	123.58	S 56.4 E	100	400.00	-0.87	0.85	S	0.23	0.88	165.01	0.14	0.13	-14.98
Gyro	500.0	0.32	135.82	S 44.2 E	100	500.00	-1.21	1.16	S	0.59	1.30	153.06	0.11	0.09	12.24
Gyro	600.0	0.22	142.34	S 37.7 E	100	600.00	-1.60	1.51	S	0.90	1.76	149.20	0.10	-0.10	6.52
Gyro	700.0	0.28	108.93	S 71.1 E	100	699.99	-1.86	1.74	S	1.25	2.14	144.36	0.15	0.06	-33.41
Gyro	800.0	0.28	104.21	S 75.8 E	100	799.99	-2.05	1.88	S	1.72	2.55	137.61	0.02	0.00	-4.72
Gyro	900.0	0.32	123.46	S 56.5 E	100	899.99	-2.31	2.09	S	2.19	3.03	133.77	0.11	0.04	19.25
Gyro	953.0	0.35	137.51	S 42.5 E	53	952.99	-2.53	2.30	S	2.42	3.34	133.50	0.16	0.06	26.51
ATC1	1082.0	0.66	116.30	S 63.7 E	129	1081.99	-3.25	2.92	S	3.35	4.44	131.02	0.28	0.24	-16.44
ATC1	1208.0	3.03	268.32	S 88.3 W	126	1207.94	-3.39	3.33	S	0.67	3.40	168.59	2.88	1.88	120.65
ATC1	1239.0	3.89	274.33	N 85.7 W	31	1238.88	-3.14	3.28	S	1.19 \	V 3.49	200.02	3.01	2.77	19.39
ATC1	1333.0	8.16	280.53	N 79.5 W	94	1332.34	-0.68	1.82	S	10.94 \	V 11.09	260.56	4.59	4.54	6.60

VAS – Rock Volatile Properties Data/Logs

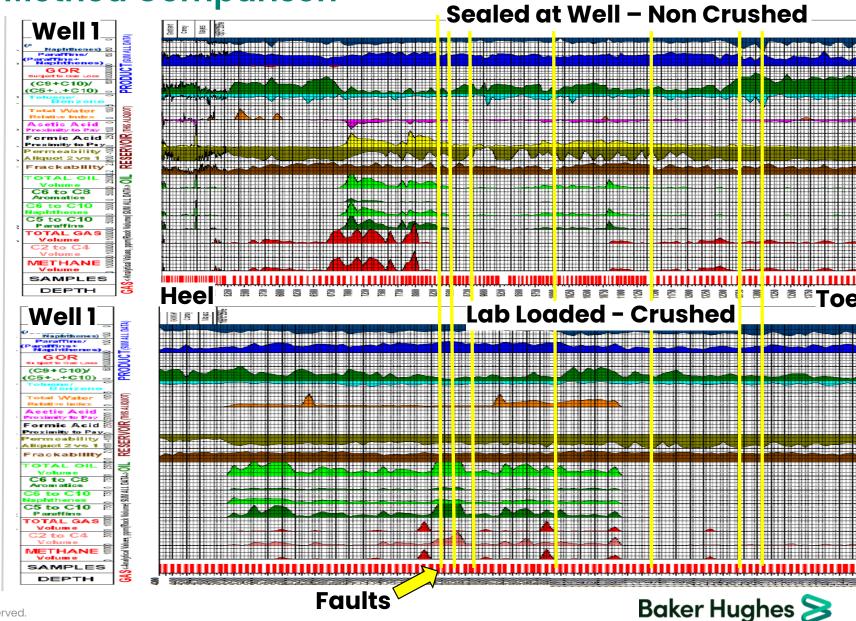
Project Sampling

- Lab Loaded = crushed samples at start of extraction.
 - ✓ Provides opportunity to run VAS on DUC & Legacy wells.
 - ✓ Opportunity for post mortem assessments.
- Sealed at Well = extraction without crushing of sample.
 - ✓ Provides opportunity to preserve downhole reservoir fluid conditions.
 - Dynamic insights on fluid migration/charging effects related to faulting.
- Sampling methods and intervals are customized to project specific needs. AHS consultation & recommendations are provided.
 - Recommended to capture samples above reservoir zone for baseline geochemistry of hydrocarbon system.
 - ✓ Sealed vs Lab Loaded dependent on SOW and lateral/vertical level of investigation.

Well ID	Sampling Method	Sampling Interval	Measured Depth Drilled		
Well 1	Sealed at Well	10 ft.	4270-5260 ft.		
VVOII 1		90 ft.	5260-14530 ft.		
Well 2	Sealed at Well	30 ft.	5310-5700 ft.		
VVOII Z	ocalca at well	90 ft.	5700-13500 ft.		
Well 3	Lab Loaded -	100 ft.	4700-6500 ft.		
VVCII 3	Crushed	300 ft.	6500-12470 ft.		
Well 4	Lab Loaded -	400 ft.	5000-11700 ft.		
VVOII 4	Crushed	100 ft.	11700-13765 ft.		

VAS Results: Sample Method Comparison

Sealed vs Loaded Crushed


Different analytical approaches for designated sampling method.

Sealed

- Provides more detailed insight into lighter HC and total gas property.
- Captures & retains VAS properties used for open faults migrating fluids.

Lab Loaded - Crushed

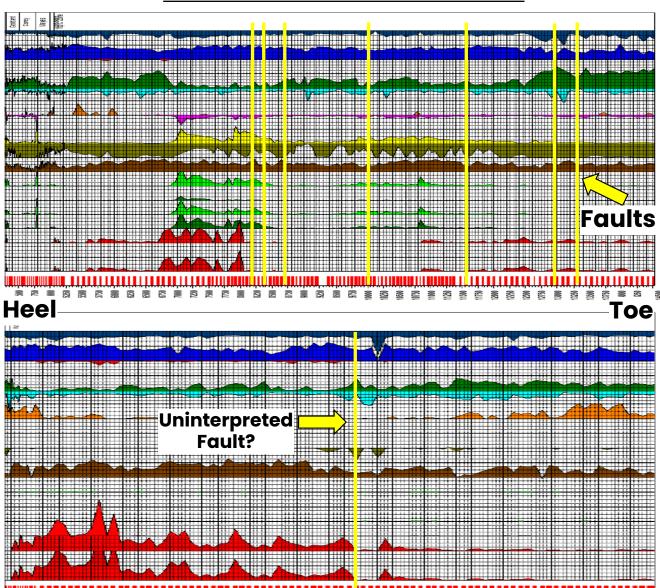
When used in tandem with sealed method provides insights into water vs oil wetting intervals.

VAS Results

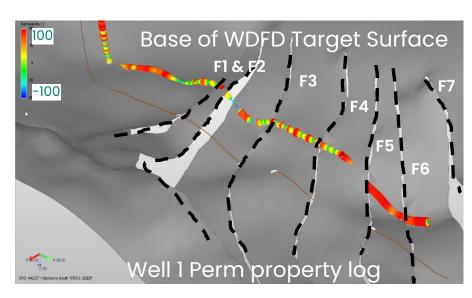
 Reservoir model uses sealed at well data for more in depth look at reservoir fluid conditions.

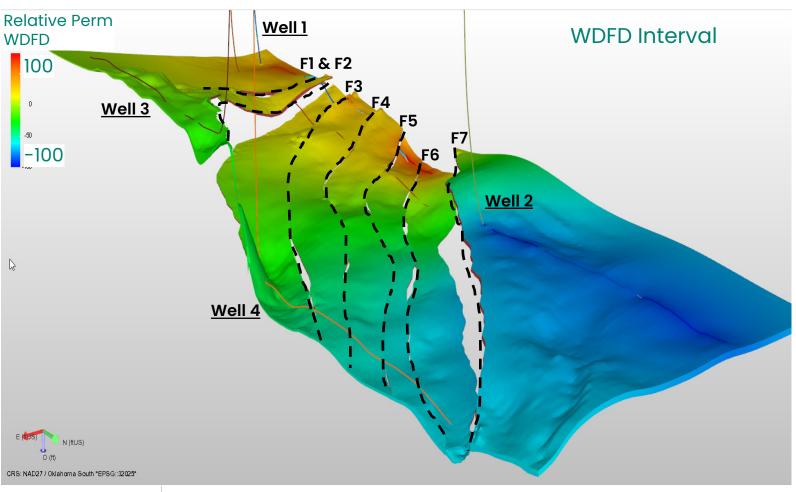
Well 1 Analysis:

- More geologically complex with multiple faults encountered while drilling.
- Faults are effecting fluid migration and HC charging of fault blocks.


• Well 2 Analysis:

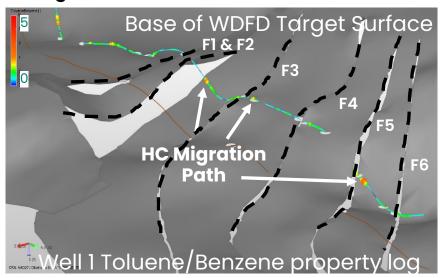
- ✓ Less production potential when compared to Well 1.
- Low proximity to pay indicators and low relative permeability.
- High total gas zone indicative of tight reservoir rock.

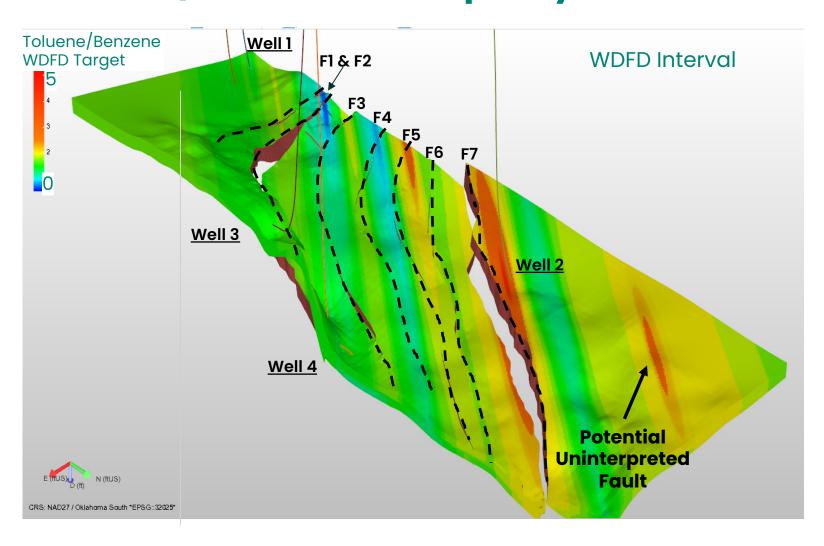

Sealed at Well - Non Crushed



VAS Visualization: Permeability Property

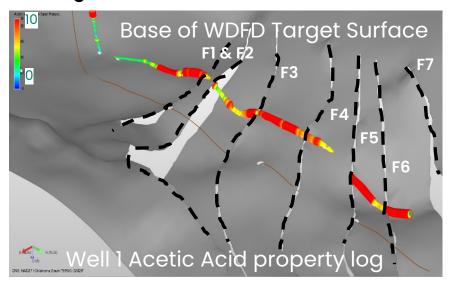
- Permeability measurements are relative and qualitative, not quantitative.
- Northern up thrown fault block contains lowest permeability.
- Highest permeability measurements captured in highly faulted area.

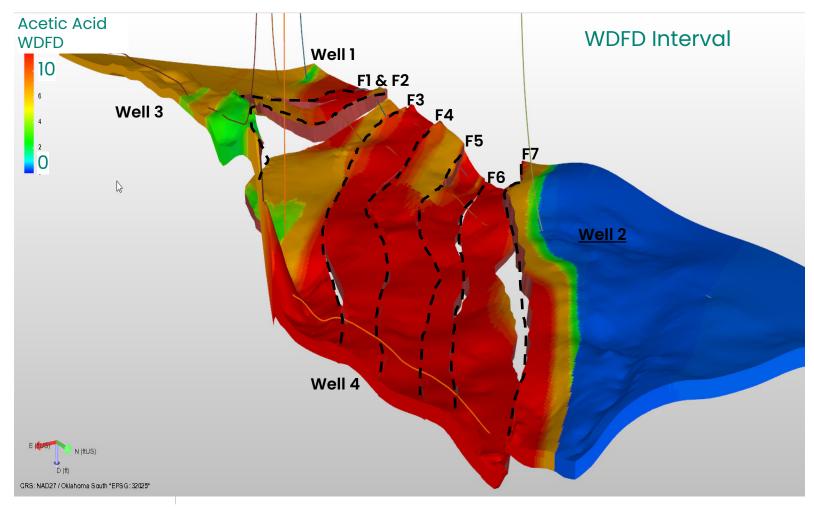




VAS Visualization: Toluene/Benzene Property

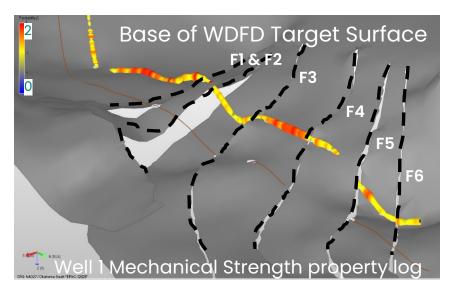
- Toluene/Benzene property provides insight into oil migration. Value > 3 = significant migration.
- Toluene/Benzene in highest concentrations around northern fault zone and faults with highest offset within the graben zone.
- Zones around faults highlighted in red and yellow indicate high potential for oil migration.

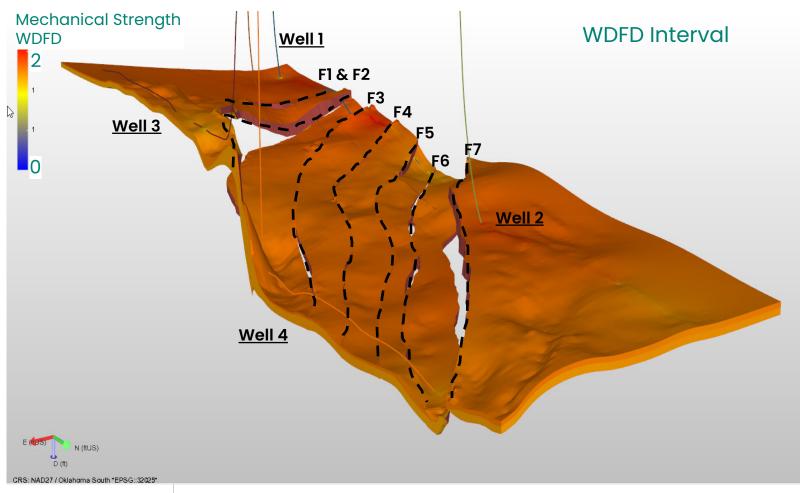




VAS Visualization: Acetic Acid Property

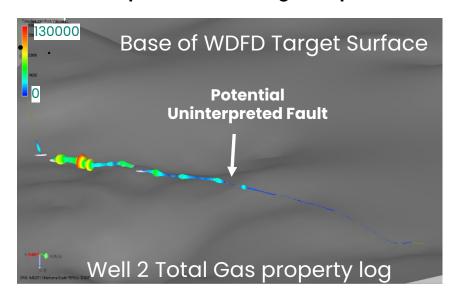
- Acetic acid property provides insight into proximity to pay related to biodegradation of hydrocarbons.
- Acetic acid in highest concentrations within the graben fault zone.
- Proximity to pay indicators suggest higher production potential within graben fault zone.

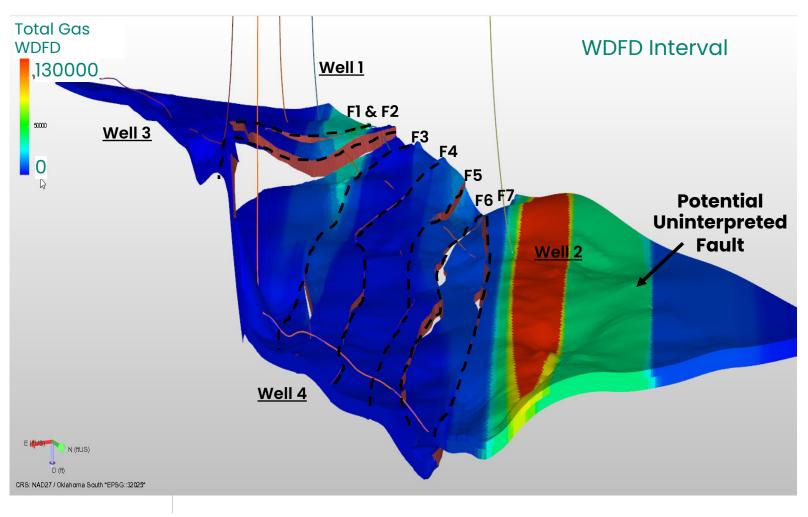




VAS Visualization: Mechanical Strength Property

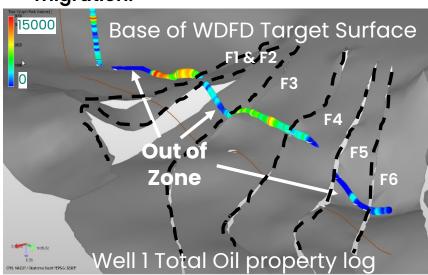
- Mechanical strength values range from 0-2, and are produced when mechanically squeezing cuttings tubes.
- Consistent measurements within target zone across the field.
- Lowest mechanical strength readings recorded when borehole goes out of target zone.

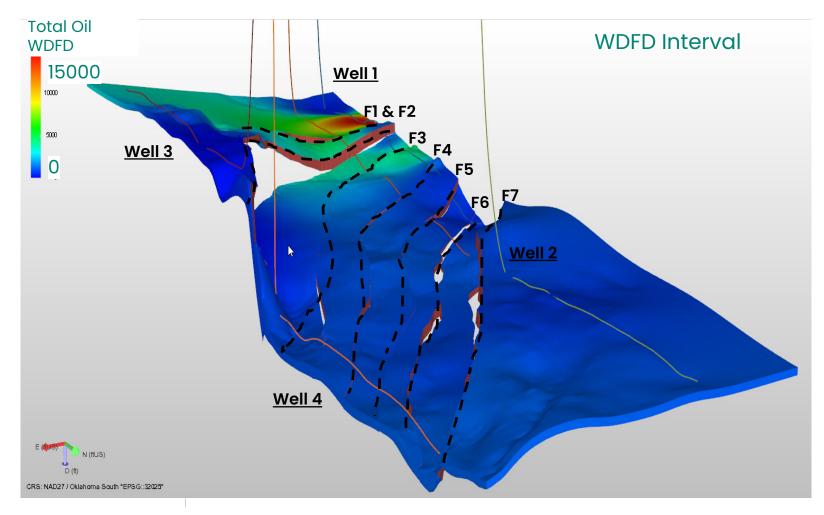




VAS Visualization: Total Gas Volume

- Total gas volume recovered consistently low within graben and southern block.
- Low gas volume recovery from cuttings potentially indicative of better gas production areas due to open faults.
- Northern fault block exhibits zone of high gas volume where minor faulting provides better representation of gas in place.





VAS Visualization: Total Oil Volume

- Total oil volume recovery lowest on the north fault block and where wellbore drilled out of target interval.
- Higher oil volume recovery zones due to open faults migrating hydrocarbons.
- Oil volume indicators within Well 1 lateral occur along interpreted open faults from toluene/benzene data. Evidence for migration.

Conclusions

- Sampling interval and method dependent on SOW for specified unconventional reservoir & project area.
 - New wells open to sealed at well sampling method.
 - > Legacy wells or DUCs open for lab loaded-crushed method.
 - 3D reservoir modeling requires consistent sampling method across the AOI.
- 3D VAS visualizations offer detailed insights into reservoir fluid conditions within unconventional reservoir targets.
 - > Single well analysis produce 3D visualizations of VAS property distributions along the wellbore and insights on reservoir quality.
 - Multiple well analysis provides insight for 3D reservoir modeling with respect to VAS properties and insights on the relationship with the overall geologic framework of an AOI.
- Unconventional Woodford reservoirs in the Arkoma AOI are dependent on:
 - > Geologic complexity and mapping of open faults migrating and charging designated fault blocks with hydrocarbons.
 - Reservoir quality insights from VAS show proximity to pay and permeability indicators are highest in the graben fault blocks.

Baker Hughes >