From Reservoir Characterization, 3D Seismic multi-attribute analysis and machine learning classification to Well Performance Simulation: A Woodford Shale Case Study in North of Oklahoma, USA

Emilio J. Torres-Parada¹, Saurabh Sinha²,
Roger M. Slatt¹, Kurt J. Marfurt² and Lennon E. Infante²

The University of Oklahoma
School of Geology and Geophysics

¹Institute of Reservoir Characterization (IRC) consortium
²Attribute Assisted Seismic Processing and Interpretation (AASPI) consortium
Collaboration

Institute of Reservoir Characterization, OU

Attribute Assisted Seismic Processing and Interpretation (AASPI), OU
Presentation Outline

1. Introduction
2. Integration Workflow
3. Geo-cellular model
4. 3D seismic classification (SOM, GTM, K-means)
5. 3D unconventional reservoir properties modeling
6. Type Curve classification
7. Simulation
8. Conclusions
The value of integration

Stratigraphy: Outcrop to Subsurface

Rock Mechanics (fractures)

Organic Matter Content

Geophysics

Sweet Spot Detection

Landing Zones

Fluid Flow

(Institute of Reservoir Characterization, 2018)
STUDY AREA

- Location Map of the principal geologic and production provinces in Oklahoma (Northcutt et al., 2001).
What do why mean by top Woodford shale sweet spots?

- Stratigraphic chart for the Arkoma Basin, southeastern Oklahoma (Perry, 1995 in Portas, 2009).
IRC Depositional Models from North to South through Woodford shale sea level cycles

- The early stage of falling sea level may result in water mass isolation and restricted water circulation over topographic depressions left by karst/incised valley development on the underlying carbonate platform.

Modified from Slatt, 2016
The areas where the Woodford thickens correspond to the areas where the Hunton thins = Cana Field

There is an inverse relation between thickness of the Hunton unconformity and the overlying Woodford Shale.

Craig D. Caldwell, 2013. Cana Woodford Shale Play, Anadarko Basin: The Effects of Mudrock Lithologies and Mechanical Stratigraphy on Completion and Production. OGS Oklahoma shale gas and oil workshop 2013
Important of Woodford shale Depositional Fairways
For rock mechanics

Biogenic sediments

- Reservoir rock (radiolaria)
- Clays, detrital quartz, TOC
- Turbidity flow surges into the sea from a river mouth

Detrital sediments

- Brittle layer
- Higher Brittleness layer

Galvis, 2017
Becerra, 2017
Ghosh, 2017

Slatt and Torres, OCGS April 2018 luncheon
Woodford shale rock mechanics

Brittle (reservoir)-Ductile (organic rich source rock) couplets seen in outcrops ('Brittle-ductile couplets' after Slatt and Abousleiman, 2011)
Proposed Geo-cellular Modeling Workflow

- Post-stack seismic and velocity volumes
- Core and Log data for stratigraphic and reservoir properties characterization: DT, RHOB, GR, Res, Vp and Vs. UCS, E and v
- Well Tops and stratigraphic maps
- TOC, rock Eval pyrolysis and biomarkers
- Density, porosity and saturation measurements

Extract seismic statistical wavelet
- Create synthetics seismograms
- Seismic phase rotation and Well Ties

- Interpret main horizons and faults
- Seismic attributes
- Seismic Analysis
- Coherence K1 and K2 principal curvatures
- Model based post-stack inversion
- Identification of possible fracture zones as geohazards
- Build low frequency background model
- Inversion analysis
- Generate post-stack inversion

Unsupervised machine learning
- P-Impedance Volume
- Self Organizing Maps (SOM)
- Zp, seismic trace dip azm, RMS amp., Curvature
- Vertical upscaling and lateral property propagation

Collocated co-kriging for guiding reservoir modeling sequential gaussian simulation

- 3D structural framework
- Time – depth conversion
- 3D structural framework

Identify possible fracture zones as geohazards

Generate structural maps

Model based post-stack inversion

Build low frequency background model

Inversion analysis

Generate post-stack inversion

Unsupervised machine learning
Seismic Interpretation and Well Control

Total 21 wells available with sonic and density logs
WDFD Time structure map (ms)
Pre-WDFD Time thickness

S-A'
S-A
S-B
S-C
S-D
S-E
S-F
Low frequency Background model using multilinear regression of single well models and instantaneous frequency and phase attributes.
Machine learning Classification Methods

Let’s get some seismic facies in my shale reservoir!

➢ K-means
➢ Self Organizing Maps (SOM)
➢ Generative Topographic Mapping (GTM)
➢ Support Vector Machine (SVM)
➢ Gaussian Mixture Models (GMM)
➢ Artificial Neural Networks (ANN)

(Meldahl et al., 2011; Roy and Marfurt, 2013; Snyder, 2016; Zhao et al., 2016; Qi et al., 2016; Infante-Paez, 2018)
Let’s get some seismic facies in my shale reservoir!

When is a coffee mug a donut? Topology explains it

- K-means
- Self Organizing Maps (SOM)
- Generative Topographic Mapping (GTM)
- Support Vector Machine (SVM)
- Gaussian Mixture Models (GMM)
- Artificial Neural Networks (ANN)

(Meldahl et al., 2011; Roy and Marfurt, 2013; Snyder, 2016; Zhao et al., 2016; Qi et al., 2016; Infante-Paez, 2018)
Petrophysical properties upscaling and variogram distribution for lateral interpolations based on collocated co-kriging

Inverted P-impedance: interpolated

Self Organizing Map (SOM)
Geomechanical Properties from Well Logs

Young’s Modulus
\[E = \frac{\rho V_s^2 (3V_p^2 - 4V_s^2)}{(V_p^2 - V_s^2)} \]

Poisson’s Ratio
\[v = \frac{(V_p^2 - 2V_s^2)}{2(V_p^2 - V_s^2)} \]

Bulk Modulus
\[K = \rho V_p^2 - \frac{4}{3} \rho V_s^2 \]

Shear Modulus
\[G = \rho V_s^2 \]

Fracture Toughness
\[K_{ic} = 0.05E \]

Horizontal Stress
\[S_h = \left(\frac{v}{1-v} \right) S_v + \left(\frac{1-2v}{1-v} \right) \alpha \rho \]

Fracture Gradient
\[FG = \frac{S_h + T_o}{Depth(m)} \]
Geomechanical Properties from Well Logs
Reservoir modeling guided with seismic rock properties

Fracture Toughness

Shear Modulus

Young’s Modulus

Poisson’s Ratio
Calculation of TOC

- Passey’s Vs. Schmocker ???

Passey’s (1990)

\[
\Delta \log R = \log_{10} \left(\frac{R}{R_{\text{baseline}}} \right) + 0.02 \times (\Delta t - \Delta t_{\text{baseline}})
\]

\[
\text{TOC} = (\Delta \log R) \times 10^{(2.97 - 0.1688 \times \text{LOM})}
\]

Applied Schmocker's – calibrated with core and cuttings TOC%

\[
\text{TOC [wt\%]} = \left[(-56.547 \times \text{RHOB}) + 154.867 \right] / 2
\]
Calculation of TOC with well logs
TOC Calculation – Average in zone of interest
Reservoir model

Vertical Exaggeration: 10
Reservoir simulation – area selection

Inverted P-impedance: interpolated

Self Organizing Map (SOM)
The value of integration

- Stratigraphy: Outcrop to Subsurface
- Organic Matter Content
- Geomechanics (fractures)
- Sweet Spot Detection
- Landing Zones
- Fluid Flow
- Geophysics
Identify areas with:

- High Thickness
- Low FG (brittle)
- High TOC
- High impedance

GRP-5 mainly hard beds.
GRP-4 Mainly Soft beds.
Coupled Simulation

Geomechanical Coupling (Fully coupled, two way)

- **Fluid Model**
 - Rich Condensate
 - Seven Lumped components
 - Same for all TC areas
 - Primary aim is to see geology variations

Conceptual implementation of Barton – Bandis model (after Tran et al., 2009).
Coupled Simulation: Geomechanical properties + fluid flow

Well bottom-hole pressure for the injection.

Gas rate, BHP and cumulative gas for Area 1 well

Gas oil ratio for area 1 well

- 5,200 ft lateral length
- Fracture stage every 220 ft.
- 250,000 gallons slick water
- Dew point 4,200 PSI
- 0.65 specific gravity
- 55 API Gravity
EUR Summary

Simulation Results

<table>
<thead>
<tr>
<th>Area</th>
<th>TC Well EUR (MBOE)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1802</td>
</tr>
<tr>
<td>2</td>
<td>1624</td>
</tr>
<tr>
<td>3</td>
<td>803</td>
</tr>
<tr>
<td>4</td>
<td>729</td>
</tr>
</tbody>
</table>

Operator xxx Results

<table>
<thead>
<tr>
<th>Area</th>
<th>TC Well EUR (MBOE)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2000</td>
</tr>
<tr>
<td>2</td>
<td>1702</td>
</tr>
<tr>
<td>3</td>
<td>1385</td>
</tr>
<tr>
<td>4</td>
<td>509</td>
</tr>
</tbody>
</table>

Inverted P-impedance: interpolated

Self Organizing Map (SOM)
Conclusions

➢ Our study identifies geological sweet spots and type curves in the Woodford shale (TOC, geomechanical parameters)

➢ Study shows using best of all available dataset can enormously increase the resolution and confidence on static model

➢ Results show multi-attribute analysis provide a promising alternative way of deriving the type curves

➢ Geomechanical simulation provides a robust way to model gradual closing of fractures and hence a time variant “shrinking” simulated rock volume instead of conventional history matching with multiple permeability zones
A HUGE THANK YOU!!!

• Henry Galvis
• Daniela Becerra
• Dr. Sayantan Ghosh
• Dr. R. Paul Philp
• Rafael Pires da Lima
Questions?

etorres@ou.edu
rslatt@ou.edu

www.irc.oucreate.com