Fusing High Resolution, Physically-Based Models and Remote Sensing to Understand and Predict Water Fluxes and Stocks

Hernan A. Moreno, Ph.D.
Assistant Professor
School of Atmospheric and Geographic Sciences
11/15/2018
Research Associates

Hernan Moreno
Assistant Professor
Department of Geography and
Environmental Sustainability
Google Scholar Profile

J.J. Gourley
Research Hydrologist
National Severe Storms
Laboratory- NOAA
Google Scholar Profile

Hamed Zamani Sabzi
Postdoctoral Research Associate
Multi-criteria optimization for
watershed restoration. Modeling
for watershed restoration and
conservation.

Laura Alvarez
Postdoctoral Research Associate
Center for Automated Sensing and
Sampling
Google Scholar Profile

Rachel Fovarge
Postdoctoral Research Associate
Balancing water usage and ecosystem
outcomes under drought and climate
change through optimization modeling

Tri Pham
MS student in Civil Engineering
Distributed hydrologic modeling
of soil moisture and
evapotranspiration.

Zhen Hong
PhD student in Geography,
Remote sensing hydrology Evaluation of
satellite imagery and use for water
resources planning.

Jorge Celis
MS student in Geography
Distributed hydrologic Modeling,
Surface Energy Budget and soil
temperature profiles at eddy flux
sites.
Outline

1. Improving hyper-resolution modeling for watershed predictions.
2. Hydrologic effects of forest disturbance
3. Real-time river flood forecasting
4. Soil moisture and ET processes
5. Bathymetry and surface water storage using smart sampling systems
• Need for process-based modeling constantly remarked in journal opinion papers.
• Distributed and continuous.
• Topography, land cover and soils types.
• Coupled vadose and saturated zones.
• Runoff mechanisms and channel routing.
• Water and energy balance.
• Snow processes

TRIBS: Tin-based Real-time Integrated Basin Simulator
Table II. Hydrologic components of the tRIBS distributed hydrologic model

<table>
<thead>
<tr>
<th>Model process</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rainfall interception</td>
<td>Canopy water balance model</td>
</tr>
<tr>
<td>Surface energy balance</td>
<td>Combination equation (λ,E), gradient method (H) and force-restore equation (G)</td>
</tr>
<tr>
<td>Surface radiation model</td>
<td>Short-wave and long-wave components accounting for terrain variability</td>
</tr>
<tr>
<td>Evapotranspiration</td>
<td>Bare soil evaporation, transpiration and evaporation from wet canopy</td>
</tr>
<tr>
<td>Infiltration</td>
<td>Kinematic approximation with capillarity effects; unsaturated, saturated and perched conditions; top and wetting infiltration fronts</td>
</tr>
<tr>
<td>Lateral vadose flow</td>
<td>Topography-driven lateral unsaturated and saturated vadose flow</td>
</tr>
<tr>
<td>Runoff production</td>
<td>Infiltration-excess, saturation-excess, perched return flow and groundwater exfiltration</td>
</tr>
<tr>
<td>Groundwater flow</td>
<td>Two-dimensional flow in multiple directions, dynamic water table</td>
</tr>
<tr>
<td>Overland flow</td>
<td>Nonlinear hydrologic routing</td>
</tr>
<tr>
<td>Channel flow</td>
<td>Kinematic wave hydraulic routing</td>
</tr>
</tbody>
</table>
What are the spatially distributed hydrologic effects of forest thinning?

- **Projected Change**
 - Average Runoff Rate, \(R_{\text{proj}} \) (mm/h)
 - Vadose Zone Soil Moisture, \(\theta_{\text{proj}} \) (-)
 - Evapotranspiration, \(ET_{\text{proj}} \) (mm/y)
 - Longest Number of Days of Continuous Snow Cover, \(NDS_{\text{proj}} \) (days)
 - Maximum Season SW, \(SW_{\text{proj}} \), \(SW_{\text{max,proj}} \) (mm)

- **Reference case**
 - Average Runoff Rate, \(R_{\text{ref}} \) (mm/h)
 - Vadose Zone Soil Moisture, \(\theta_{\text{ref}} \) (-)
 - Evapotranspiration, \(ET_{\text{ref}} \) (mm/y)
 - Longest Number of Days of Continuous Snow Cover, \(NDS_{\text{ref}} \) (days)
 - Maximum Season SW, \(SW_{\text{ref}} \), \(SW_{\text{max,ref}} \) (mm)

- Changes:
 - Local runoff increases
 - Soil moisture and ET mixed patterns
 - Days with snow cover reduced between 1 and 60 days
 - Max. snow water reduced in 350 mm
Participatory modeling for water security
Radar nowcasts + tRIBS

TITAN

Nowcasting model
Thunderstorm Identification, Tracking, Analysis and Nowcasting

tRIBS: Tin-based Real Time Integrated Basin Simulator
What basin sizes are more predictable?

Flooding less predictable at Intermediate size basins (1-10% of total Area) as a result of an increased fraction of runoff producing zones.

Standard Error

$$S = \frac{Q_R}{A_c M A}$$

(a) $\mu(SE/SE_{\text{max}})$ Storm 2004
Virtual Mesonet Eddy-Covariance
Preliminary simulations at one eddy station

Latent heat flux

Soil surface temperature
Fusing L-band radiometers and observations to improve continuous and accurate modeling

Figure 4. Tempest UAS illustrating location of LDCR an MiCo antenna elements.

Figure 5: Google earth images overlay of LDCR retrieved VSM maps and in-situ measured VSM, data from (a) September 8\(^{th}\), (b) September 9\(^{th}\).

Figure 7: Land cover classification of IRF mapping area.
Lake and river bathymetry from UAS

Figure 3. Pix4D software outputs: Orthomosaic and corresponding Digital Elevation Model (DEM)
Figure 6. Bathymetry of Finn Creek 21 Reservoir using the single-beam echosounder. (a) Cumulative sampling points taken with the single-beam echosounder during August of 2017. (b) Bathymetric mapping built with the single-beam echosounder is shown.

Figure 8. Bathymetry of Finn Creek 21 Reservoir using UAS-SfM technique taken during August of 2017.