Multiple Regression

Definition

Multiple Regression Equation

A linear relationship between a dependent variable y and two or more independent variables $(x_1, x_2, x_3, \dots, x_k)$

Model:

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \dots + \beta_k x_k + e$$

Multiple Regression

Definition

Multiple Regression Equation

A linear relationship between a dependent variable y and two or more independent variables $(x_1, x_2, x_3, \ldots, x_k)$

$$\hat{y} = b_0 + b_1 x_1 + b_2 x_2 + \ldots + b_k x_k$$

$\dot{y} = b_0 + b_1 x_1 + b_2 x_2 + b_3 x_3 + \dots + b_k x_k$

(General form of the estimated multiple regression equation)

n = sample size

k = number of independent variables

y = predicted value of the dependent variable y

 $x_1, x_2, x_3 \dots, x_k$ are the independent variables

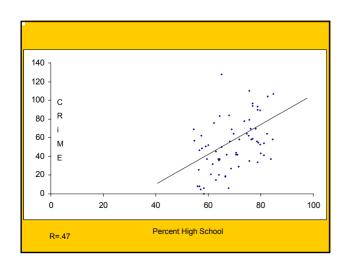
Notation

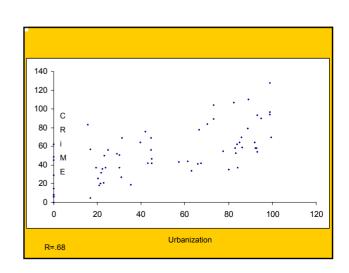
 β_0 = the y-intercept, or the value of y when all of the predictor variables are 0

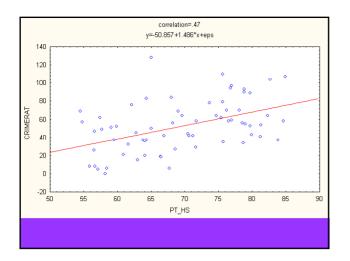
 \mathbf{b}_0 = estimate of $\mathbf{\beta}_0$ based on the sample data

 $m{\beta}_1, \, m{\beta}_2, \, m{\beta}_3 \dots, \, m{\beta}_k$ are the population coefficients of the independent variables $\, x_1, \, x_2, \, x_3 \dots, \, x_k \,$

 $b_1,\,b_2,\,b_3\dots,\,b_k$ are the sample estimates of the coefficients $\beta_1,\,\beta_2,\,\beta_3\dots,\,\beta_k$







		Analysis of V	ariance		
Source	DF	Sum of Squares	Mean Square	F Value	Pr > F
Model	2	24732	12366	28.54	<.0001
Error	64	27730	433.28847		
Corrected Total	66	52462			

Overall Regression Analysis: A Test of the Multiple R

(R=.686) Dependent Mean 52.40299 Adj R-Sq 0.454 Coeff Var 39.72213
Coeff Var 39.72213

Variable	DF	Parameter Estimate	Standard Error	t Value	Pr > t
Intercept	1	59.11807	28.36531	2.08	0.0411
hs	1	-0.58338	0.47246	-1.23	0.2214
Urb	1	0.68250	0.12321	5.54	<.0001

Notice that the slope of hs is negative

Parameter Estimates							
Variable	DF	Parameter Estimate	Standard Error	t Value	Pr > t		
Intercept	1	-50.85690	24.45065	-2.08	0.0415		
hs	1	1.48598	0.34908	4.26	<.0001		

When hs is by itself the slope is positive

			n Coefficients, N = 67 der H0: Rho=0			
	crate	incom	hs	Url		
crate	1.00000	0.43375	0.46691	0.6773		
		0.0002	<.0001	<.000		
incom	0.43375	1.00000	0.79262	0.73070		
	0.0002		<.0001	<.000		
hs	0.46691	0.79262	1.00000	0.79072		
	<.0001	<.0001		<.000		
Urb	0.67737	0.73070	0.79072	1.00000		
	<.0001	<.0001	<.0001			

Multiple Regression SAS Setup

- · proc corr; run;
- proc reg; model crate= hs Urb;
- plot crate*hs;run;
- proc reg; model crate= hs;run;

Adjusted R²

Definitions

- Multiple coefficient of determination
 - a measure of how well the multiple regression equation fits the sample data
- Adjusted coefficient of determination

the multiple coefficient of determination R^2 modified to account for the number of variables and the sample size

Adjusted R²

Adjusted R²

Adjusted R² = 1 -
$$\frac{(n-1)}{[n-(k+1)]}$$
 (1 - R²)

Adjusted R²

Adjusted R² = 1 -
$$\frac{(n-1)}{[n-(k+1)]}$$
 (1 - R²)

where n = sample size

k = number of independent (x) variables

Including the Three Variables

Analysis of Variance							
Source	DF	Sum of Squares	Mean Square	F Value	Pr > F		
Model	3	24804	8268.16424	18.83	<.0001		
Error	63	27658	439.00995				
Corrected Total	66	52462					

	Overall Tes	t	
Root MSE	20.95256	R-Square	0.4728
Dependent Mean	52.40299	Adj R-Sq	0.4477
Coeff Var	39.98353		

Tests of Hypotheses

• Overall test:

Null: All of the population regression weights are

Alternative: Not all are zero

The overall F Test

$$F_{k,n-k-1} = \frac{R^2 / k}{(1 - R^2) / (n - k - 1)}$$

Parameter Estimates									
Variable	DF	Parameter Estimate	Standard Error	t Value	Pr > t				
Intercept	1	59.71473	28.58953	2.09	0.0408				
incom	1	-0.38309	0.94053	-0.41	0.6852				
hs	1	-0.46729	0.55443	-0.84	0.4025				
Urb	1	0.69715	0.12913	5.40	<.0001				
Urb	1	0.69715	0.12913	5.40	<.000				

Individual Tests

• Test for β_1 :

$$Y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_3 + e$$

 $Y = \beta_0 + \beta_2 x_2 + \beta_3 x_3 + e$

• Test for β_2 :

$$Y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_3 + e$$

 $Y = \beta_0 + \beta_1 x_1 + \beta_3 x_3 + e$

• Test for β_3 :

$$Y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_3 + e$$

 $Y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + e$

F Test for Restricted Models

$$F_{k-g,n-k-1} = \frac{(R_f^2 - R_r^2)/(k-g)}{(1 - R_f^2)/(n-k-1)}$$

More on SAS

• Model options:

Model y = x1 x2 / R partial p stb;

R- residual analysis

Partial-partial regression scatter plot

P- predicted values

Stb- standardized regression weights

Standardized Regression Weights

$$b_i^* = b_i \left(\frac{S_{x_i}}{S_y} \right)$$

Generally, the standardized regression weights fall between 1 and -1. However, they can larger than one (or less than -1).

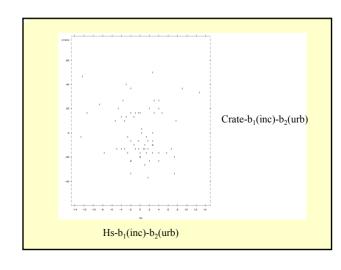
Obtaining the Standardized Regression Weights

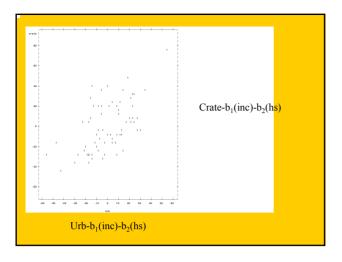
- Model Statement
 - Model crate = incom hs urb /stb;

Parameter Estimates										
Variable	DF	Parameter Estimate	Standard Error	t Value	Pr > t	Standardized Estimate				
Intercept	1	59.71473	28.58953	2.09	0.0408	0				
incom	1	-0.38309	0.94053	-0.41	0.6852	-0.06363				
hs	1	-0.46729	0.55443	-0.84	0.4025	-0.14683				
Urb	1	0.69715	0.12913	5.40	<.0001	0.83996				

Partial Regression Plots

- Plot of two residuals
- The regression line in this plot corresponds to the regression weight in the overall model.
- Model Statement / partial





Interaction of two Variables

- Just as in ANOVA we can have interaction effects in a multiple regression analysis.
- For quantitative variables, interaction is present when the relationship between the explanatory variable and the response changes as the levels of another variable changes.
- Consider crime rate as a function of hs and urb. If the relationship (slope) between crime rate and urb changes as hs changes, we have an interaction between urb and hs.

Testing for an Interaction Effect

• We test for interaction effect by comparing a model with interaction to a model without interaction:

$$Y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_3 (x_1 * x_2) + e$$

$$Y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + e$$

SAS Setup for Interaction

- Create a the product variable in the data statement:
 - Data new; input y x z; xz=x*z; cards;
 - Model y = x z xz;

Root MSE	20.82583	R-Square	0.4792			
Dependent Mean	52.40299	Adj R-Sq	0.4544			
Coeff Var	39.74168					
Model crate= hs urb hs*urb (Looking for an interaction)						

Tarametti Estimates								
Variable	DF	Parameter Estimate	Standard Error	t Value	Pr > t			
Intercept	1	19.31754	49.95871	0.39	0.7003			
hs	1	0.03396	0.79381	0.04	0.9660			
Urb	1	1.51431	0.86809	1.74	0.0860			
hsurb	1	-0.01205	0.01245	-0.97	0.3367			
	Testii	ng the Interaction						

SAS Setup for Interaction

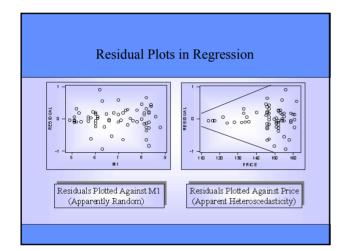
data crime; input crate incom
 hs Urb; hsurb= hs*urb; cards;
104 22.1 82.7 73.2

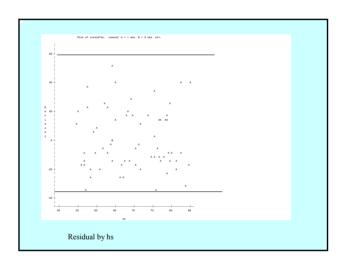
proc reg; model crate= hs Urb
 hsurb;

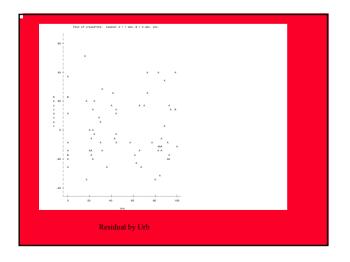
run;

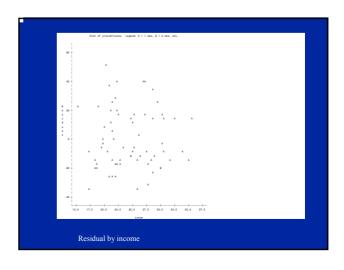
Assessing The Fit of the Model

Looking further at residuals









SAS Setup

- proc reg;
- model crate= incom hs Urb;
- output out=new p=yhat r=yresid;
- proc plot data=new;
- plot yresid*hs;
- plot yresid*urb;
- plot yresid*incom; run;

Assumptions

- Linearity—the relationship between the dependent variable and independent variables is linear.
- Normality—y is independently normally distributed
 - Independently distributed random errors with a mean of zero.
- Homoskedasticity—the conditional variances of y given x are all equal.

Investigating Multicollinearty

- · SAS Model Statement:
- model crate= incom hs Urb / vif collin;
- When the explanatory variables are highly correlated (multicollinearity) the standard errors of the regression weights tend to get very large.

Collinearity Diagnostics							
				Proportion of	Variation .		
Number	Eigenvalue	Condition Index	Intercept	incom	hs	Urb	
1	3.78327	1.00000	0.00053670	0.00082225	0.00029978	0.00648	
2	0.20397	4.30678	0.00735	0.00127	0.00107	0.39725	
3	0.00983	19.61619	0.22868	0.81261	0.00944	0.29914	
4	0.00293	35.92811	0.76343	0.18530	0.98919	0.29712	

Using the Multicollinearity Indices

- Look for conditioned indices larger than 30
- If an index is large than 30, identify variables with proportion indices larger than .90
 - Proportion of variance in each coefficient attributable to the condition index.

Parameter Estimates								
Variable	DF	Parameter Estimate	Standard Error	t Value	Pr > t	Variance Inflation		
Intercept	1	59.71473	28.58953	2.09	0.0408	0		
incom	1	-0.38309	0.94053	-0.41	0.6852	2.91618		
hs	1	-0.46729	0.55443	-0.84	0.4025	3.62675		
Urb	1	0.69715	0.12913	5.40	<.0001	2.89274		

Variance Inflation Factor (VIF)

$$R_{i.rest}^2 = \frac{VIF - 1}{VIF}$$

VIF- the variance of the weight is inflated by this quantity.

Root MSE	4.72386	R-Square	0.7243
Dependent Mean	69.48955	Adj R-Sq	0.7157
Coeff Var	6.79794		
Model: hs = income u	rbanization		

Collinearity Diagnostics									
			Proportion of Variation						
Number	Eigenvalue	Condition Index	Intercept	incom	Urb				
1	2.80034	1.00000	0.00293	0.00203	0.01645				
2	0.19004	3.83868	0.03655	0.00499	0.50952				
3	0.00962	17.06408	0.96052	0.99299	0.47402				

Test that a subset of regression weights are equal to zero

• SAS Test Statement:

Or, test incom, hs;

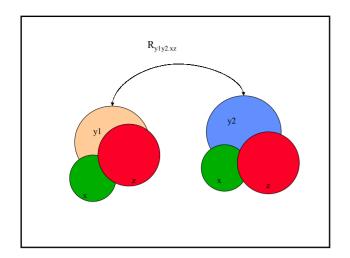
Results from the Joint test $\beta_{hs} = \beta_{incom} = 0$ Test 1 Results for Dependent Variable crate Mean Pr > FDF F Value Source Square 366.72473 0.84 0.4385 Numerator 2 Denominator 439.00995

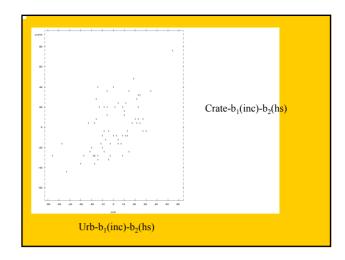
Partial Correlations

• In a partial correlation a variable is partial out of both variables

 $r_{x1x2 \;.\; x3}$

$$r_{12.3}^2 = \frac{R_{1.23}^2 - R_{1.3}^2}{1 - R_{1.23}^2}$$





Semipartial Correlations

• The variable is partial out from only one of the variables. The squared semipartial correlation is given by

$$r_{1(2.3)}^2 = R_{1.23}^2 - R_{1.3}^2$$

Relationship between Semipartials and the Multiple R²

$$R_{y.1234}^2 = r_{y.1}^2 + r_{y(2.1)}^2 + r_{y(3.12)}^2 + r_{y(4.123)}^2$$

Finding the Best Multiple Regression Equation

- Use common sense and practical considerations to include or exclude variables and always plot the data.
- Instead of including almost every available variable, include relatively few independent (x) variables, weeding out independent variables that don't have an effect on the dependent variable, remember collinearity.
- 3. Select an equation having a value of adjusted R^2 with this property: If an additional independent variable is included, the value of adjusted R^2 does not increase by a substantial amount.
- 4. For a given number of independent (x) variables, select the equation with the largest value of adjusted R^2 .
- 5. You want overall significance with all of the regression weights being significant also.