
Adaptive Pattern Recognition for Tornado Detection

1 Learning Objectives:
• Students will learn how to develop a simple three layer neural network consisting of: a two

node input layer, a one node output layer, and a hidden layer that connects the two and

is governed by the least mean squares (LMS) algorithm. From these principles, Matlab’s

neural network toolbox will then be used to design meaningful, large-scale neural networks

for realistic weather radar data senarios.

• Students will learn about the features need to detect a tornado using Level I data, which

differs from conventional Level II techniques. The broad and flat spectra of the Level I data

will be explored.

• Students will train a large-scale neural network to recognize the broad and flat Doppler

spectrum associated with tornadoes. The students will examine a diverse class of artificial

neural networks for the most efficient candidate. To do this, the students will look at their

architecture, choice of kernel, training time, and the generalization ability of the classifier

(how well it responds to new inputs).

2 Introduction

Enhanced tornado detection and tracking can prevent loss of life and property damage. The

research WSR-88D (weather surveillance radar) locally operated by the National Severe Storms

Laboratory (NSSL) in Norman has the unique capability of collecting massive volumes of time

series data over many hours which provides a rich environment for evaluating new post-processing

algorithms. With the advent of more memory and computing power, new state-of-the-art algo-

rithms can be explored. In this laboratory, an approach of identifying tornado vortices in Doppler

spectra is proposed and investigated through the use of neural networks. Once the coordinates of

the tornado has been established, the research question becomes: how can students apply target

tracking algorithms to a volume of radar data to make estimations about where the tornado is

going?

2.1 Remote Sensing: the Weather Surveillance Radar

About one-third of the nation’s $10 trillion economy is sensitive to climate variability and

weather [1–3]. Networked remote sensor systems, such as the ubiquitous WSR-88D (Weather

Surveillance Radar - 1988 Doppler) in Figure 1, comprise the approximately 150 weather radars

in the continental U.S. that are in a national network to provide the bulk of the nation’s weather

information [4,5]. The research WSR-88D (known as KOUN within the national network) oper-

ated by the National Severe Storms Laboratory in Norman has the unique capability of collecting

massive volumes of Level I time series data over many hours. A unique feature of the KOUN is

that it has a dual polarization capability and hence the two receivers. It can change modes from

dual to single polarization. It should also be mentioned that there are 47 more terminal Doppler
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weather radars (TDWRs) that are similar to the WSR-88D at airports throughout the nation.

A prominent feature of the TDWR is that it can probe inside storms and measure dangerous

wind shifts, such as those linked to windshear and downburst, which pose a threat to aircraft

during take-off and landing [6]. Long-term warnings have improved greatly over the last five

years and are now being used for critical decision making [7]. Further improvements are being

aimed at providing longer warning lead times before severe weather events, better quantification

of forecast uncertainties in hurricanes and floods, and tools for integrating probabilistic forecasts

with other data sets [7].

Figure 1: Hardware architecture of the operational system. The research WSR-88D (KOUN)
operated by the National Severe Storms Laboratory in Norman has the unique capability of col-
lecting massive volumes of Level I time series data over many hours. A unique feature of the
KOUN is that it has a dual polarization capability and hence the two receivers. It can change
modes from dual to single polarization (this drawing is used with permission from Allen Zahari,
NSSL).

Weather surveillance radars, particularly the WSR-88D, have shown to be an important tool

to observe severe and hazardous weather remotely, and to provide operational forecasters prompt

information of rapidly evolving phenomena [8]. One of the most extreme weather phenomena

is the tornado which can produce destructive wind speeds as high as 140 m/s [9]. Early and

accurate detection of tornadic vortices can increase the lead time for tornado warning to prevent

loss of life and property damage. A key component of current tornado detection algorithms on

WSR-88D radars is a search for the presence of strong localized azimuthal shear of the radial

winds. However, because the radar sample volume increases with distance from the radar, the

shear signature deteriorates as the range of the tornado increases. In this work, an independent

approach of identifying tornado vortices in Doppler spectra is proposed and investigated. The

Doppler spectrum reveals weighted velocity distribution within the radar volume. The Level

II data (reflectivity, mean Doppler velocity, and spectrum width) is obtained by the first three

moments of the distribution [10]. Therefore, a characteristic spectrum for tornadoes may still
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facilitate their identification when the shear signature becomes difficult to identify.

Doppler spectra of tornadoes have a distinct character that set them apart from other

spectra. Flat and bimodal tornado spectral signature (TSS) have been shown using simulated

data [11]. Although the history of tornado measurements is long, there have been only a few

successes in obtaining spectra data. This is largely because neither the technology to process

spectra, nor the technology to record voluminous amounts of time series data were available. The

present day radar technology and computer resources are now advanced enough to study TSS in

a systematic manner. As a pulsed Doppler radar intermittently radiates electromagnetic energy,

it also receives energy that is reflected back to it from various targets. These targets may be rain

drops, hail stones, birds, aircraft, and other meteorological and non-meteorological reflections.

When the energy is received at the radar, these analog signals are digitized, and the result is

known as Level 1 data. Unlike typical WSR-88D’s, the research WSR-88D (KOUN) operated by

the National Severe Storms Laboratory (NSSL) is a pulsed Doppler radar that has the unique

capability of collecting significant quantities Level I time series data over many hours. Doppler

spectra can be obtained by processing these Level I data after the event. Data from a tornado

outbreak in central Oklahoma on May 10, 2003 are presented in the “hands-on activities” section

of this lab.

2.2 Doppler Spectra and Spectral Analysis

The mean Doppler velocity v̄(R0) is defined by the following equation.

v̄(R0) =

∫
∞

−∞

vSn(R0, v) dv (1)

where Sn(R0, v) is the Doppler spectrum normalized by the total power, where R0 is the cen-

ter of the radar volume, and where v is the radial velocity component. Therefore, the mean

Doppler velocity is the the first moment of the spectrum, which is estimated from one realization

(or probe volume). Level I data are produced by received reflected energy. That is, energy is

reflected back to the radar when it bounces back from an object. These objects or targets are

typically referred to as scatterers, since energy is scattered back to the radar. Here, a target

is a considered to be a water droplet within a tornado. The Level I data are represented in a

format called in-phase (I) and quadrature (Q). A one-dimensional Fourier transform can be used

to transform these time-domain I and Q samples into the frequency domain or Doppler velocity

spectrum. Three spectral moments of weather phenomena from the I and Q data are: 1.) the

weather signal power which is an indication of reflectivity, 2.) the mean Doppler velocity, and

3.) spectrum width. Hence, reflectivities and mean Doppler velocities were obtained every half

degree in azimuth using the autocovariance method [10]. This method yeilds results that are

similar to spectral analysis, but it is more computationally efficient since only the first three

moments are being computed.
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2.3 Example Tornado

Current tornado detection algorithms rely on the difference of mean Doppler velocity between

adjacent radar volumes in azimuth. Tornado spectra observed by the NSSL research WSR-88D

(KOUN) located at Norman, Oklahoma on May 10, 2003 are analyzed. An F2-F3 tornado was

reported approximately during the interval of time 9:30 - 10:00 pm (central time) starting south

of Edmond, Oklahoma (more details of the tornado can be found from NOAA National Climate

Data Center NCDC, http://www.ncdc.noaa.gov/oa/ncdc.html). Level I time series data were

collected during the entire period of tornado. A well-defined hook signature and strong azimuthal

Figure 2: PPI of the WSR-88D reflectivity at 9:43 pm, May 10, 2003. The small box outlines
the location of the region of interest. The data for the spectral calculations in Figure 5 originate
from this box. The small white dots indicate the tornado damage path from the ground survey.

shear were observed at 6 km west and 39 km north of the radar, indicating the existence of a

tornado. As noted by Brown [12], a hook-shaped relectivity feature, that is typically on the right

rear flank of a severe storm, indicates the presence of a mesocyclone that has the potential of

having a tornado form within it. From simulation and real data, it is clear that tornado can

produce a broad and flat spectrum which is similar to white-noise spectrum. However, significant

signal power still remains in the tornado spectrum.

2.4 Neural Networks

A feedforward backpropagation (FFB) network is a generalization of network architecture of

Figure 3. The authors in [13] have shown that a three-layer FFB neural network with sigmoid

transfer functions in the hidden layer and linear transfer functions in the output layer, can

approximate any continuous function to an arbitrary precision. To minimize the squared mapping

error, CG algorithms traverse the error surface along a set of conjugate directions. A set of vectors

p1,p2, ...,pn construct a conjugate system if there is a non-singular symmetric N ×N matrix A,

such that pT
i Apj = 0, for i 6= j, i = 1, 2, ..., n. The authors in [14,15] have shown that the exact

minimum of any quadratic function can be found by moving along a set of conjugate directions

p1,p2, ...,pn. Such a conjugate system can be constructed by first defining p1 = −g1, then

subsequently pk = −gk + βkpk−1. The variable gk = ∇F (W)|W=Wk
is the gradient evaluated
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at the old weights, i.e. Wk, k = 2, ..., n and βk is given by

βk =
gT

k gk

gT
k−1

gk−1

. (2)

CG methods adaptively update the weights in a sequence of steps by moving along the conjugate

directions Wk+1 = Wk + αkpk. The variable αk is called the learning rate parameter and

determines how far movements occur along each search direction. For a quadratic function, αk

can be analytically calculated to minimize the performance function along the search path as

defined by the conjugate directions [16]. Thus

αk = −
gT

k gk

gT
k−1

Akgk−1

. (3)

The variable Ak = ∇2F (W) is the Hessian matrix for a quadratic function. It is noticed that

in many practical applications the performance function is a higher order function of hundreds

of weight parameters. However, a local quadratic approximation can be achieved by applying

Taylor expansion formula [16]. Finally, the SCG algorithm employs an approximation of the

Hessian matrix to reduce computational time and complexity. See [17] for more details.

Figure 3: Sketch of the feedforward/backpropagation network which was employed. 32 input nodes
were followed by 40 hidden neurons. The conjugate gradient algorithm was employed to train the
1280 weights of the first hidden layer, which are denoted by W1. Similarly, the conjugate gradient
algorithm was employed to train the 40 second-layer weights, which are denoted by W2.

2.5 Data Preprocessing

Figure 4 depicts how a clustering algorithm may be used to increase the class separability. Here,

objects are clustered based on attributes into multiple partitions using the standard K-MEANS

algorithm. The algorithm is a variant of the expectation-maximization algorithm in which the

goal is to determine the k means of data generated from Gaussian distributions. It assumes that

the object attributes form a vector space. The objective it tries to achieve is to minimize total

intra-cluster variance. Based on these objects, a learning algorithm may be used to autonomously

determine if a tornado is present or not.
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Figure 4: K-Means algorithms may be used to increase class separability, which improves the
performance of the classifier or network.

3 Hands-On Activities

• Similar to our classroom discussions, derive a simple neural network that is based on a least

mean squares (LMS) algorithm for its internal optimization. The network is to have three

layers: input, hidden, and output. For this simple system, the input layer should have two

nodes, while the output layer should have only one node. Show how such a system may be

trained to mimic an OR gate, and present a graph illustrating the number of iterations that

were needed for the training to become completed. After this, visit the Neural Network

toolbox and familiarize yourself with it. It may be conveniently employed for large scale

systems that have practical ramifications.

• Download this WSR-88D data:

– www.ou.edu/radar/data0305100331.m

– www.ou.edu/radar/data0305100337.m

– www.ou.edu/radar/data0305100343.m

– www.ou.edu/radar/data0305100355.m

– www.ou.edu/radar/data0305100034.m

– www.ou.edu/radar/data0305100039.m

• Calculate the Doppler spectrum of each vector of 32 samples by taking the Fourier transform

of the I and Q time-series samples, taking its magnitude squared, and expressing it in

units of decibels. You may wish to implement further preprocessing of the data passing

each Doppler spectrum through a low-pass digital filter (that you design). The smoothed

Doppler spectra form the input feature vectors that are fed into your network.

• For the given range gates of data, the students will be responsible for carefully partitioning

the data into two sets: one for training and one for classification (i.e. pattern recognition).
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The student is also responsible for determining the number of input nodes and number of

hidden nodes. Hint: the number of input nodes × the number of hidden nodes > 1000.

• Use a scaled conjugate gradient (SCG) training algorithm to adjust the weights in a neural

network. SCG is a powerful extension of a class of optimization techniques known as the

conjugate gradient (CG) methods. Your results should show how the training is used to

adjust the weights of the neural network such that a desired mapping from input to the

output is achieved. To solve this optimization problem, it is suggested that mapping error

is to be defined as F (Wk) = e2(k) = [t(k) − a(k)]2, where Wk is the vector of network

weights and biases, e(k) is the error signal, t(k) is a vector of desired target outputs, and

a(k) is a vector current outputs of the network at the kth iteration. This activity may be

implemented using Matlab’s Neural Network toolbox. The students should explain his or

her training and pattern recognition results using the network. For this exercise and data,

a training curve for a working system is in Figure 5. As such, training times and false alarm

rates should be discussed. Also make a drawing of architecture of the network showing all

of the nodes and inter-connectivity relationships.

0 50 100 150
10

−4

10
−3

10
−2

10
−1

10
0

10
1

183 Epochs

T
ra

in
in

g−
B

lu
e 

 G
oa

l−
B

la
ck

Performance is 0.000990751, Goal is 0.001

Figure 5: Error curve for a given number of training epochs.

• BONUS: In addition to a neural network, a support vector machine (SVM) classifier is

to be designed and employed to identify the tornadoes and severe weather patterns using

the I and Q data. In general, an SVM-based classifier evades the pitfalls of the traditional

statistical learning algorithms, such as neural networks, by setting up a convex optimization

problem with a single global minimum [18]- [22]. The student is required to show how

using kernels and nonlinear mappings to higher dimensional spaces, the SVM classifier is

7



able to effectively handle nonlinear classification problems. Finally, the student should

demonstrate how an SVM has the added advantage of reducing overfitting by constructing

a maximum margin separating hyperplane in a higher dimensional feature space which

ensures a small generalization error bound.
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