Skip Navigation

Wenjun Cui

Wenjun Cui

Wenjun Cui.

Research Scientist

wenjun.cui@ou.edu
wenjun.cui@noaa.gov
National Weather Center 3227


  • PhD, Atmospheric Sciences, University of Arizona
  • MS, Atmospheric Sciences, University of North Dakota
  • BS, Atmospheric Sciences, Nanjing University of Information Science and Technology

  • Stormscale Convection and Radar Team

Dr. Cui's work integrates remote sensing observations with machine learning techniques to reconstruct hazard climatologies and analyze the atmospheric environmental conditions conductive to various severe weather phenomena. Furthermore, her research includes assessing the fidelity of high-resolution regional convection-allowing models in representing these events and explore their characteristics under evolving atmospheric conditions. The overarching goal of her research is to advance our understanding and prediction of severe weather. 


  • Severe weather hazard climatology 
  • Machine learning applications in meteorological research 
  • Climate change impacts on severe thunderstorms 
  • Precipitation processes associated with thunderstorms

  • Weather Radar and Observations
  • Mesoscale and Stormscale Modeling R&D

  • Paul, D., Dubey, S. and Cui, W. (2025). Mesoscale Convective Systems over South Asia: Unraveling climatology, land-ocean differences and environmental drivers. Clim Dyn. https://doi.org/10.1007/s00382-025-07844-z. 
  • Li, J., Geiss, A., Feng, Z., Leung, L. R., Qian, Y., and Cui, W. (2025). A derecho climatology (2004–2021) in the United States based on machine learning identification of bow echoes. Earth Syst. Sci. Data. https://doi.org/10.5194/essd-17-3721-2025. 
  • Cui, W., Galarneau, T. J., and Hoogewind, K. A. (2024). Changes in mesoscale convective system precipitation structures in response to a warming climate. J. Geophys. Res. Atmos. https://doi.org/10.1029/2023JD039920.
  • Li, C., Cui, C., Jiang, X., Wang, X., Fu, S., Cui, W., Berrington, A. H., Sun, J., and Liu, P. (2024). Diurnal variation in short- and long-duration precipitation within the Dabie Mountain region in Central China. Int. J. Climatol. https://doi.org/10.1002/joc.8333. 
  • Galarneau, T. J., Zeng, X., Dixon, R. D., Ouyed, A., Su, H., Cui, W. (2023). Tropical mesoscale convective system formation environments. Atmos. Sci. Lett.  https://doi.org/10.1002/asl.1152.
  • Li, C., Li, Y., Fu, S., Jiang, X., Wang, X., Li, S., Cui, C., Hu, Y., and Cui, W. (2022). A new perspective on the orographic effect of the windward slope on the multi-scale eastward-moving southwest vortex systems. Atmos. Res. https://doi.org/10.1016/j.atmosres.2022.106365.
  • Cui, W., Dong, X., Xi, B., and Zhe, F. (2021). Climatology of linear mesoscale convective system morphology based on random forests method.  J. Clim. 34 (17), https://doi.org/10.1175/JCLI-D-20-0862.1. 
  • Cui, W., Dong, X., Xi, B., and Liu, M. (2020). Cloud and precipitation properties of MCSs along the Meiyu frontal zone in central and southern China and their associated large-scale environments. J. Geophys. Res. Atmos. 125(6), https://doi.org/10.1029/2019JD031601.
  • Cui, W., Dong, X., Xi, B., Zhe, F., and Fan, J. (2020). Can the GPM IMERG half-hourly Final product accurately represent MCSs’ precipitation characteristics over the Central and Eastern United States? 21(1), 39-57. J. Hydrometeor. https://doi.org/10.1175/JHM-D-19-0123.1.
  • Fu, Z., Dong, X., Zhou, L., Cui, W., Wang, J., Wan, R., Leng, L., Xi, B. (2020). Statistical Characteristics of Raindrop Size Distributions and Parameters in Central China during the Meiyu Seasons. J. Geophys. Res. Atmos. http://doi.org/10.1029/2019JD031954.
  • Cui, W., Dong, X., Xi, B., Fan J., Tian J., Wang, J., and McHardy M. M. (2019). Understanding ice cloud-precipitation properties of three modes of mesoscale convective systems during PECAN. J. Geophys. Res. Atmos. 124. https://doi.org/10.1029/2019JD030330.
  • Sun, Y., Dong, X., Cui, W., Zhou, Z., Fu, Z., Zhou, L., Deng, Y., and Cui, C. (2019). Vertical structures of typical Meiyu precipitation events retrieved from GPM-DPR. J. Geophys. Res. Atmos. 125. https://doi.org/10.1029/2019JD031466.
  • Wang, X., Dong X., Deng Y., Cui C., Wan R., and Cui, W. (2018). Contrasting Pre-Meiyu and Meiyu Extreme Precipitation in the Yangtze River Valley: Influencing Systems and Precipitation Mechanisms. J. Hydrometeo. 20(9), 1961-1980. https://doi.org/10.1175/JHM-D-18-0240.1.
  • Cui, W., Dong, X., Xi, B., and Aaron, K. (2017). Evaluation of reanalyzed precipitation variability and trends using the gridded gauge-based analysis over the CONUS. J. Hydrometeor. 18(8). https://doi.org/10.1175/JHM-D-17-0029.1.
  • Cui, W., Dong, X., Xi, B., and Stenz, R. (2016). Comparison of the GPCP 1DD precipitation product with NEXRAD Q2 precipitation estimates over the continental United States. J. Hydrometeor. 17(6). https://doi.org/10.1175/JHM-D-15-0235.1.
  • Cui, W., Zhi, X., Zhu, S., Zhou, Z., Wang, X., and Li, H. (2016). Comparison of the performance of three schemes in calculating the cloudiness during a Mei-yu rainfall process over the Yangtze River Basin. Trans. Atmos. Sci., 39(2), 209-220. Doi: 10.13878/j.cnki.dqkxxb.20141102003 (In Chinese).
  • Wang, X., Cui, C., Cui, W., and Shi, Y. (2014). Modes of mesoscale convective system organization during Meiyu season over the Yangtze River Basin. J. Meteorol. Res., 28, 111-126. https://doi.org/10.1007/s13351-014-0108-4.