Skip Navigation

Travis Smith

Travis Smith

Travis Smith

Senior Research
Associate

tms@ou.edu
travis.smith@noaa.gov
National Weather Center 3939


  • MS, Meteorology, University of Oklahoma
  • BS, Meteorology, University of Oklahoma

  • WRDD

Travis Smith’s primary focus is on severe weather warning technologies to improve decision-making for warnings of tornadoes, hail, and damaging convective windstorms. He was a founder of and has led multiple programs including Multi-Radar/Multi-Sensor (MRMS) severe weather applications, the Hazardous Weather Testbed’s (HWT) Experimental Warning Program (EWP), and the Forecasting A Continuum of Environmental Threats (FACETs) Probabilistic Hazard Information (PHI). 


  • Severe and Convective Weather
  • Radar Meteorology
  • Warning Decision Support
  • Meteorological Software Development
  • Thunderstorm Probability and Impacts
  • Nowcasting and Warnings
  • Testbeds and Experimental Design

  • Weather Radar and Observations
  • Forecast Applications Improvements R&D
  • Social and Socioeconomic Impacts of High Impact Weather

  • National Weather Association - Larry R. Johnson Special Award, 2016 (MRMS)
  • National Weather Association - Larry R. Johnson Special Award, 2015 (HWT)
  • University of Oklahoma - Innovator Award, 2012 (MRMS/WDSS-II)
  • World Meteorological Organization - Dr. Vilho Vaisala Award for an Outstanding Research Paper, 2010 (“Rapid Sampling of Severe Storms by the National Weather Radar Testbed Phased Array Radar.” Weather and Forecasting, 2008.)
  • NOAA/OAR - Outstanding Paper Award, 2009 (“Rapid Sampling of Severe Storms by the National Weather Radar Testbed Phased Array Radar.” Weather and Forecasting, 2008.)
  • AMS, Best Poster Award, 2008 (“An on-demand user interface for requesting multi-radar, multi-sensor time accumulated products to support severe weather verification.” 23rd Conference on Interactive Information Processing Systems)
  • NOAA Technology Transfer Award, 2008
  • NOAA High Performance Computing and Communication NOAA Tech Award, 2004
  • NOAA Bronze Medal Award (team award), 2003 (“for rapid and innovative actions in collecting, archiving, and analyzing weather radar data to assist the Shuttle Columbia accident investigation.”)
  • FAA Excellence in Aviation Award, 2002, (“for contributions to the FAA's Aviation Weather Research Program, which was organized to generate more accurate and accessible aviation weather observations, warnings and forecasts.”)
  • Satrio, C. N., K. M. Calhoun, P. A. Campbell, R. Steeves, T. M. Smith, 2022: An Objective Scoring Method for Evaluating the Comparative Performance of Automated Storm Identification and Tracking Algorithms. Weather and Forecasting, EOR, doi:10.1175/WAF-D-22-0047.1
  • Williams, S. S., K. L. Ortega, T. M. Smith, and A. E. Reinhart, 2022: Comprehensive Radar Data for the Contiguous United States: Multi-Year Reanalysis of Remotely Sensed Storms. Bull. Amer. Meteor. Soc., 103, E838–E854, https://doi.org/10.1175/BAMS-D-20-0316.1.
  • Calhoun, K. M., K. L. Berry, D. M. Kingfield, T. Meyer, M. J. Krocak, T. M. Smith, G. Stumpf, A. Gerard, 2021: The Experimental Warning Program of NOAA’s Hazardous Weather Testbed. Bulletin of the American Meteorological Society, 102, E2229–E2246, doi:10.1175/BAMS-D-21-0017.1
  • Jergensen, G. E., McGovern, A., Lagerquist, R., & Smith, T. (2020). Classifying Convective Storms Using Machine Learning, Weather and Forecasting, 35(2), 537-559
  • Lagerquist, R., A. McGovern, C. R. Homeyer, D. J. Gagne II, and T. Smith, 2020: Deep Learning on Three-Dimensional Multiscale Data for Next-Hour Tornado Prediction. Mon. Wea. Rev., 148, 2837–2861, https://doi.org/10.1175/MWR-D-19-0372.1.
  • McGovern, A., Lagerquist, R., John Gagne, D., II, Jergensen, G. E., Elmore, K. L., Homeyer, C. R., & Smith, T. (2019). Making the Black Box More Transparent: Understanding the Physical Implications of Machine Learning, Bulletin of the American Meteorological Society, 100(11), 2175-2199
  • McGovern, A., Karstens, C. D., Smith, T., & Lagerquist, R. (2019). Quasi-Operational Testing of Real-Time Storm-Longevity Prediction via Machine Learning, Weather and Forecasting, 34(5), 1437-1451.
  • Mahalik, M. C., Smith, B. R., Elmore, K. L., Kingfield, D. M., Ortega, K. L., & Smith, T. M. (2019). Estimates of Gradients in Radar Moments Using a Linear Least Squares Derivative Technique, Weather and Forecasting, 34(2), 415-434.
  • Rothfusz, L. P., Schneider, R., Novak, D., Klockow-McClain, K., Gerard, A. E., Karstens, C., Stumpf, G. J., & Smith, T. M. (2018). FACETs: A Proposed Next-Generation Paradigm for High-Impact Weather Forecasting, Bulletin of the American Meteorological Society, 99(10), 2025-2043.
  • Karstens, C. D., Correia, J., Jr., LaDue, D. S., Wolfe, J., Meyer, T. C., Harrison, D. R., Cintineo, J. L., Calhoun, K. M., Smith, T. M., Gerard, A. E., & Rothfusz, L. P. (2018). Development of a Human–Machine Mix for Forecasting Severe Convective Events, Weather and Forecasting, 33(3), 715-737.
  • McGovern, A., K. L. Elmore, D. J. Gagne, S. E. Haupt, C. D. Karstens, R. Lagerquist, T. Smith, and J. K. Williams, 2017: Using Artificial Intelligence to Improve Real-Time Decision-Making for High-Impact Weather. Bull. Amer. Meteor. Soc., 98, 2073–2090, https://doi.org/10.1175/BAMS-D-16-0123.1.
  • Lagerquist, R., A. McGovern, and T. Smith., 2017: Machine Learning for Real-Time Prediction of Damaging Straight-Line Convective Wind. Weather and Forecasting 32:6, 2175-2193.
  • Smith, T.M., V. Lakshmanan, G.J. Stumpf, K.L. Ortega, K. Hondl, K. Cooper, K.M. Calhoun, D.M. Kingfield, K.L. Manross, R. Toomey, and J. Brogden, 2016:  Multi-Radar Multi-Sensor (MRMS) Severe Weather and Aviation Products: Initial Operating Capabilities, Bull. Amer. Meteor. Soc., 97, 1617–1630, doi:10.1175/BAMS-D-14-00173.1.
  • Karstens, C. D., G. Stumpf, C. Ling, L. Hua, D. Kingfield, T. M. Smith,, J. Correia, K. Calhoun,, K. Ortega, C.Melick and L. P. Rothfusz, 2015: Evaluation of a Probabilistic Forecasting Methodology for Severe Convective Weather in the 2014 Hazardous Weather Testbed. Wea. Forecasting, 30, 1551–1570, https://doi.org/10.1175/WAF-D-14-00163.1.
  • Calhoun, K. M., T. M. Smith, D. M. Kingfield, J. Gao, and D. J. Stensrud, 2014: Forecaster Use and Evaluation of Real-Time 3DVAR Analyses during Severe Thunderstorm and Tornado Warning Operations in the Hazardous Weather Testbed. Wea. Forecasting, 29, 601–613, https://doi.org/10.1175/WAF-D-13-00107.1.
  • Smith, T.M., J. Gao, K.M. Calhoun, D.J. Stensrud, K.L. Manross, K.L. Ortega, C. Fu, D.M. Kingfield, K.L. Elmore, V. Lakshmanan, and C. Riedel, 2013: Examination of a real-time 3DVAR analysis system in the Hazardous Weather Testbed.  Weather and Forecasting, early online release http://dx.doi.org/10.1175/WAF-D-13-00044.1
  • Clark, A. J., J. Gao, P. T. Marsh, T. Smith, J. S. Kain, J. Correia , M. Xue, and F. Kong, 2013: Tornado Pathlength Forecasts from 2010 to 2011 Using Ensemble Updraft Helicity. Wea. Forecasting, 28, 387–407, https://doi.org/10.1175/WAF-D-12-00038.1.
  • Miller, M. L., V. Lakshmanan, and T. M. Smith, 2013: An Automated Method for Depicting Mesocyclone Paths and Intensities. Wea. Forecasting, 28, 570–585, https://doi.org/10.1175/WAF-D-12-00065.1.
  • Gao, J., and Coauthors, 2013: A Real-Time Weather-Adaptive 3DVAR Analysis System for Severe Weather Detections and Warnings. Wea. Forecasting, 28, 727–745, https://doi.org/10.1175/WAF-D-12-00093.1.
  • Newman, J. F., V. Lakshmanan, P. L. Heinselman, M. B. Richman, and T. M. Smith, 2013: Range-Correcting Azimuthal Shear in Doppler Radar Data. Wea. Forecasting, 28, 194–211, https://doi.org/10.1175/WAF-D-11-00154.1.
  • Ralph, F. M., J. Intrieri, D. Andra, R. Atlas, S. Boukabara, D. Bright, P. Davidson, B. Entwistle, J. Gaynor, S. Goodman, J. Jiing, A. Harless, J. Huang, G. Jedlovec, J. Kain, S. Koch, B. Kuo, J. Levit, S. Murillo, L. P. Riishojgaar, T. Schneider, R.Schneider, T. Smith, and S. Weiss, 2013: The Emergence of Weather-Related Test Beds Linking Research and Forecasting Operations. Bull. Amer. Meteor. Soc., 94, 1187–1211, https://doi.org/10.1175/BAMS-D-12-00080.1.
  • Cintineo, J. L., T. M. Smith, V. Lakshmanan, H. E. Brooks, and K. L. Ortega, 2012: An Objective High-Resolution Hail Climatology of the Contiguous United States. Wea. Forecasting, 27, 1235–1248, https://doi.org/10.1175/WAF-D-11-00151.1.
  • Gallo, K., T. Smith, K. Jungbluth, and P. Schumacher, 2012: Hail Swaths Observed from Satellite Data and Their Relation to Radar and Surface-Based Observations: A Case Study from Iowa in 2009. Wea. Forecasting, 27, 796–802, https://doi.org/10.1175/WAF-D-11-00118.1.
  • Lakshmanan, V. and T. Smith, 2010: An Objective Method of Evaluating and Devising Storm-Tracking Algorithms. Wea. Forecasting, 25, 701–709. doi: 10.1175/2009WAF2222330.1
  • Smith, T.M. and V. Lakshmanan, 2010: Real-time, rapidly updating severe weather products for virtual globes. Computers and Geosciences, In Press. doi: 10.1016/j.cageo.2010.03.023 (Special Issue on Virtual Globes)
  • Gourley, J.J., J.M. Erlingis, T.M. Smith, K.L. Ortega, and Y. Hong, 2010: Remote collection and analysis of witness reports of flash floods. J. Hydrology, 394, 53-62. doi:10.1016/j.jhydrol.2010.05.042 (Special Issue on Flash Floods)
  • Lakshmanan, V.and T. M. Smith, 2009: Data Mining Storm Attributes from Spatial Grids. J. Atmos. Oceanic Technol., 26, 2353–2365.
  • Ortega, K.L., T.M. Smith, K.L. Manross, K.A. Scharfenberg, A. Witt, A.G. Kolodziej, and J.J. Gourley, 2009: The Severe Hazards Analysis and Verification Experiment. Bull. Amer. Meteor. Soc., 90, 1519–1530. doi: 10.1175/2009BAMS2815.1
  • Heinselman, P.L., D.L. Priegnitz, K.L. Manross, T.M. Smith, and R.W. Adams, 2008: Rapid Sampling of Severe Storms by the National Weather Radar Testbed Phased Array Radar. Wea. Forecasting, 23, 808–824. doi: 10.1175/2008WAF2007071.1. (Winner: NOAA/OAR Outstanding Scientific Paper, 2008 and WMO Professor Dr. Vilho Vaisala Award for an Outstanding Research Paper, 2010)
  • Lakshmanan, V., A. Fritz, T. Smith, K. Hondl, and G. J. Stumpf, 2007: An automated technique to quality control radar reflectivity data. J. Applied Meteorology 46, 288-305.
  • Lakshmanan, V., T. Smith, G. J. Stumpf, and K. Hondl, 2007: The warning decision support system - integrated information (WDSS-II). Weather and Forecasting 22, 592-608.
  • Lakshmanan, V., T. Smith, K. Hondl, G. J. Stumpf, and A. Witt, 2006: A real-time, three dimensional, rapidly updating, heterogeneous radar merger technique for reflectivity, velocity and derived products. Weather and Forecasting 21, 802-823.
  • Smith, T. M., K. L. Elmore, and S. A. Dulin, 2004: A damaging downburst prediction and detection algorithm for the WSR-88D. Wea. and Forecasting. 19: 240-250, Amer. Met. Soc.
  • Stumpf, G. J., T. M. Smith, and C. Thomas, 2003: The National Severe Storms Laboratory's contribution to severe weather improvement: multi-sensor severe weather applications. Atmospheric Research 67-68: 657-669. doi:10.1016/S0169-8095(03)00079-6
  • American Meteorological Society
  • National Weather Association
  • Threads: @wxtrav